BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mayr EM, Ramírez-Zavala B, Krüger I, Morschhäuser J. A Zinc Cluster Transcription Factor Contributes to the Intrinsic Fluconazole Resistance of Candida auris. mSphere 2020;5:e00279-20. [PMID: 32321822 DOI: 10.1128/mSphere.00279-20] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Rybak JM, Cuomo CA, David Rogers P. The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris. Current Opinion in Microbiology 2022;70:102208. [DOI: 10.1016/j.mib.2022.102208] [Reference Citation Analysis]
2 Billmyre RB. Drug Resistance and Evolvability in an Emerging Human Fungal Pathogen. mBio 2022;:e0187622. [PMID: 35980032 DOI: 10.1128/mbio.01876-22] [Reference Citation Analysis]
3 Burrack LS, Todd RT, Soisangwan N, Wiederhold NP, Selmecki A, Heitman J. Genomic Diversity across Candida auris Clinical Isolates Shapes Rapid Development of Antifungal Resistance In Vitro and In Vivo. mBio. [DOI: 10.1128/mbio.00842-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Biermann AR, Hogan DA. Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl. mSphere 2022;:e0012422. [PMID: 35473297 DOI: 10.1128/msphere.00124-22] [Reference Citation Analysis]
5 Li J, Coste AT, Bachmann D, Sanglard D, Lamoth F. Deciphering the Mrr1/Mdr1 Pathway in Azole Resistance of Candida auris. Antimicrob Agents Chemother 2022;:e0006722. [PMID: 35343781 DOI: 10.1128/aac.00067-22] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Burrack LS, Todd RT, Soisangwan N, Wiederhold NP, Selmecki A. Genomic diversity across Candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo.. [DOI: 10.1101/2022.03.25.485898] [Reference Citation Analysis]
7 Biermann AR, Hogan DA. Transcriptional response of Candida auris to the Mrr1 inducers methylglyoxal and benomyl.. [DOI: 10.1101/2022.03.02.482751] [Reference Citation Analysis]
8 Bravo Ruiz G, Lorenz A. Genetic Transformation of Candida auris via Homology-Directed Repair Using a Standard Lithium Acetate Protocol. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2417-3_8] [Reference Citation Analysis]
9 Santana DJ, O'Meara TR. Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nat Commun 2021;12:7197. [PMID: 34893621 DOI: 10.1038/s41467-021-27545-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Ennis CL, Hernday AD, Nobile CJ. A Markerless CRISPR-Mediated System for Genome Editing in Candida auris Reveals a Conserved Role for Cas5 in the Caspofungin Response. Microbiol Spectr 2021;:e0182021. [PMID: 34730409 DOI: 10.1128/Spectrum.01820-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Ciurea CN, Mare AD, Kosovski IB, Toma F, Vintilă C, Man A. Candida auris and other phylogenetically related species - a mini-review of the literature. Germs 2021;11:441-8. [PMID: 34722366 DOI: 10.18683/germs.2021.1281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Borgeat V, Brandalise D, Grenouillet F, Sanglard D. Participation of the ABC Transporter CDR1 in Azole Resistance of Candida lusitaniae. J Fungi (Basel) 2021;7:760. [PMID: 34575798 DOI: 10.3390/jof7090760] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Williamson B, Wilk A, Guerrero KD, Mikulski TD, Elias TN, Sawh I, Cancino-prado G, Gardam D, Heath CH, Govender NP, Perlin DS, Kordalewska M, Healey KR. Impact of Erg11 amino acid substitutions identified in Candida auris clade III isolates on triazole drug susceptibility.. [DOI: 10.1101/2021.08.16.456589] [Reference Citation Analysis]
14 Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int J Mol Sci 2021;22:4470. [PMID: 33922907 DOI: 10.3390/ijms22094470] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
15 Carolus H, Pierson S, Muñoz JF, Subotić A, Cruz RB, Cuomo CA, Van Dijck P. Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio 2021;12:e03333-20. [PMID: 33820824 DOI: 10.1128/mBio.03333-20] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
16 Muñoz JF, Welsh RM, Shea T, Batra D, Gade L, Howard D, Rowe LA, Meis JF, Litvintseva AP, Cuomo CA. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics 2021;218:iyab029. [PMID: 33769478 DOI: 10.1093/genetics/iyab029] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 23.0] [Reference Citation Analysis]
17 Li J, Coste AT, Liechti M, Bachmann D, Sanglard D, Lamoth F. Novel ERG11 and TAC1b mutations associated with azole resistance in Candida auris. Antimicrob Agents Chemother 2021:AAC. [PMID: 33619054 DOI: 10.1128/AAC.02663-20] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
18 Bing J, Hu T, Zheng Q, Muñoz JF, Cuomo CA, Huang G. Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrob Agents Chemother 2020;65:e01466-20. [PMID: 33077664 DOI: 10.1128/AAC.01466-20] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
19 Silva LN, Ramos LS, Oliveira SSC, Magalhães LB, Squizani ED, Kmetzsch L, Vainstein MH, Branquinha MH, Santos ALSD. Insights into the Multi-Azole Resistance Profile in Candida haemulonii Species Complex. J Fungi (Basel) 2020;6:E215. [PMID: 33050545 DOI: 10.3390/jof6040215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Carolus H, Pierson S, Muñoz JF, Subotić A, Cruz RB, Cuomo CA, Van Dijck P. Genome-wide analysis of experimentally evolvedCandida aurisreveals multiple novel mechanisms of multidrug-resistance.. [DOI: 10.1101/2020.09.28.317891] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 O'Kane CJ, Weild R, M Hyland E. Chromatin Structure and Drug Resistance in Candida spp. J Fungi (Basel) 2020;6:E121. [PMID: 32751495 DOI: 10.3390/jof6030121] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]