BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Josset L, Menachery VD, Gralinski LE, Agnihothram S, Sova P, Carter VS, Yount BL, Graham RL, Baric RS, Katze MG. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio. 2013;4:e00165-e00113. [PMID: 23631916 DOI: 10.1128/mbio.00165-13] [Cited by in Crossref: 182] [Cited by in F6Publishing: 144] [Article Influence: 20.2] [Reference Citation Analysis]
Number Citing Articles
1 Limanaqi F, Busceti CL, Biagioni F, Lazzeri G, Forte M, Schiavon S, Sciarretta S, Frati G, Fornai F. Cell Clearing Systems as Targets of Polyphenols in Viral Infections: Potential Implications for COVID-19 Pathogenesis.Antioxidants (Basel). 2020;9:1105. [PMID: 33182802 DOI: 10.3390/antiox9111105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
2 Jamieson AM. Host resilience to emerging coronaviruses. Future Virol 2016;11:529-34. [PMID: 32201496 DOI: 10.2217/fvl-2016-0060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
3 Menachery VD, Baric RS. Bugs in the system. Immunol Rev 2013;255:256-74. [PMID: 23947361 DOI: 10.1111/imr.12092] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhang S, Gan J, Chen BG, Zheng D, Zhang JG, Lin RH, Zhou YP, Yang WY, Lin A, Yan WH. Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence. Clin Transl Immunology 2020;9:e1128. [PMID: 32399213 DOI: 10.1002/cti2.1128] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
5 Cunha LL, Perazzio SF, Azzi J, Cravedi P, Riella LV. Remodeling of the Immune Response With Aging: Immunosenescence and Its Potential Impact on COVID-19 Immune Response. Front Immunol 2020;11:1748. [PMID: 32849623 DOI: 10.3389/fimmu.2020.01748] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 24.0] [Reference Citation Analysis]
6 Kroeker AL, Coombs KM. Systems biology unravels interferon responses to respiratory virus infections. World J Biol Chem 2014; 5(1): 12-25 [PMID: 24600511 DOI: 10.4331/wjbc.v5.i1.12] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
7 Johnson BA, Zhou Y, Lokugamage KG, Vu MN, Bopp N, Crocquet-Valdes PA, Schindewolf C, Liu Y, Scharton D, Plante JA, Xie X, Aguilar P, Weaver SC, Shi PY, Walker DH, Routh AL, Plante KS, Menachery VD. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. bioRxiv 2021:2021. [PMID: 34671771 DOI: 10.1101/2021.10.14.464390] [Reference Citation Analysis]
8 Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020;1866:165878. [PMID: 32544429 DOI: 10.1016/j.bbadis.2020.165878] [Cited by in Crossref: 211] [Cited by in F6Publishing: 186] [Article Influence: 105.5] [Reference Citation Analysis]
9 Schett G, Manger B, Simon D, Caporali R. COVID-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol 2020;16:465-70. [PMID: 32561873 DOI: 10.1038/s41584-020-0451-z] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 28.0] [Reference Citation Analysis]
10 Meyerholz DK, Lambertz AM, McCray PB Jr. Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome. Am J Pathol 2016;186:78-86. [PMID: 26597880 DOI: 10.1016/j.ajpath.2015.09.014] [Cited by in Crossref: 91] [Cited by in F6Publishing: 89] [Article Influence: 13.0] [Reference Citation Analysis]
11 Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio 2013;4:e00524-13. [PMID: 23943763 DOI: 10.1128/mBio.00524-13] [Cited by in Crossref: 201] [Cited by in F6Publishing: 161] [Article Influence: 22.3] [Reference Citation Analysis]
12 Selinger C, Tisoncik-Go J, Menachery VD, Agnihothram S, Law GL, Chang J, Kelly SM, Sova P, Baric RS, Katze MG. Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates. BMC Genomics 2014;15:1161. [PMID: 25534508 DOI: 10.1186/1471-2164-15-1161] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
13 Moni MA, Liò P. Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies. BMC Bioinformatics 2014;15:333. [PMID: 25344230 DOI: 10.1186/1471-2105-15-333] [Cited by in Crossref: 63] [Cited by in F6Publishing: 45] [Article Influence: 7.9] [Reference Citation Analysis]
14 Ostrycharz E, Hukowska-szematowicz B. New Insights into the Role of the Complement System in Human Viral Diseases. Biomolecules 2022;12:226. [DOI: 10.3390/biom12020226] [Reference Citation Analysis]
15 Zhang YY, Li BR, Ning BT. The Comparative Immunological Characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 Coronavirus Infections. Front Immunol 2020;11:2033. [PMID: 32922406 DOI: 10.3389/fimmu.2020.02033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
16 Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol 2016;38:471-82. [PMID: 26965109 DOI: 10.1007/s00281-016-0558-0] [Cited by in Crossref: 185] [Cited by in F6Publishing: 174] [Article Influence: 30.8] [Reference Citation Analysis]
17 van den Brand JM, Smits SL, Haagmans BL. Pathogenesis of Middle East respiratory syndrome coronavirus. J Pathol 2015;235:175-84. [PMID: 25294366 DOI: 10.1002/path.4458] [Cited by in Crossref: 90] [Cited by in F6Publishing: 84] [Article Influence: 12.9] [Reference Citation Analysis]
18 Farahani M, Niknam Z, Mohammadi Amirabad L, Amiri-Dashatan N, Koushki M, Nemati M, Danesh Pouya F, Rezaei-Tavirani M, Rasmi Y, Tayebi L. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother 2022;145:112420. [PMID: 34801852 DOI: 10.1016/j.biopha.2021.112420] [Reference Citation Analysis]
19 Torres T, Puig L. Managing Cutaneous Immune-Mediated Diseases During the COVID-19 Pandemic. Am J Clin Dermatol 2020;21:307-11. [PMID: 32277351 DOI: 10.1007/s40257-020-00514-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
20 Muruato A, Vu MN, Johnson BA, Davis-Gardner ME, Vanderheiden A, Lokugmage K, Schindewolf C, Crocquet-Valdes PA, Langsjoen RM, Plante JA, Plante KS, Weaver SC, Debbink K, Routh AL, Walker D, Suthar MS, Xie X, Shi PY, Menachery VD. Mouse Adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. bioRxiv 2021:2021. [PMID: 33972939 DOI: 10.1101/2021.05.03.442357] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
21 Zeng X, Song X, Ma T, Pan X, Zhou Y, Hou Y, Zhang Z, Li K, Karypis G, Cheng F. Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning. J Proteome Res 2020;19:4624-36. [PMID: 32654489 DOI: 10.1021/acs.jproteome.0c00316] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 24.0] [Reference Citation Analysis]
22 Cong Y, Hart BJ, Gross R, Zhou H, Frieman M, Bollinger L, Wada J, Hensley LE, Jahrling PB, Dyall J, Holbrook MR. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One 2018;13:e0194868. [PMID: 29566060 DOI: 10.1371/journal.pone.0194868] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 15.8] [Reference Citation Analysis]
23 Agnihothram S, Gopal R, Yount BL Jr, Donaldson EF, Menachery VD, Graham RL, Scobey TD, Gralinski LE, Denison MR, Zambon M, Baric RS. Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis 2014;209:995-1006. [PMID: 24253287 DOI: 10.1093/infdis/jit609] [Cited by in Crossref: 70] [Cited by in F6Publishing: 68] [Article Influence: 7.8] [Reference Citation Analysis]
24 Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 2013;100:615-35. [PMID: 24129118 DOI: 10.1016/j.antiviral.2013.10.002] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 6.1] [Reference Citation Analysis]
25 Lawrence Panchali MJ, Oh HJ, Lee YM, Kim CM, Tariq M, Seo JW, Kim DY, Yun NR, Kim DM. Accuracy of Real-Time Polymerase Chain Reaction in COVID-19 Patients. Microbiol Spectr 2022;:e0059121. [PMID: 35170995 DOI: 10.1128/spectrum.00591-21] [Reference Citation Analysis]
26 Chu H, Zhou J, Wong BH, Li C, Cheng ZS, Lin X, Poon VK, Sun T, Lau CC, Chan JF, To KK, Chan KH, Lu L, Zheng BJ, Yuen KY. Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology 2014;454-455:197-205. [PMID: 24725946 DOI: 10.1016/j.virol.2014.02.018] [Cited by in Crossref: 108] [Cited by in F6Publishing: 109] [Article Influence: 13.5] [Reference Citation Analysis]
27 Milne-Price S, Miazgowicz KL, Munster VJ. The emergence of the Middle East respiratory syndrome coronavirus. Pathog Dis 2014;71:121-36. [PMID: 24585737 DOI: 10.1111/2049-632X.12166] [Cited by in Crossref: 67] [Cited by in F6Publishing: 47] [Article Influence: 8.4] [Reference Citation Analysis]
28 Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine 2020;133:155151. [PMID: 32544563 DOI: 10.1016/j.cyto.2020.155151] [Cited by in Crossref: 138] [Cited by in F6Publishing: 122] [Article Influence: 69.0] [Reference Citation Analysis]
29 Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC, Wong KK, Chan JY, Chan JF, To KK, Chan KH, Zheng BJ, Yuen KY. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis. 2014;209:1331-1342. [PMID: 24065148 DOI: 10.1093/infdis/jit504] [Cited by in Crossref: 258] [Cited by in F6Publishing: 252] [Article Influence: 28.7] [Reference Citation Analysis]
30 Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. Sci Data 2020;7:314. [PMID: 32963239 DOI: 10.1038/s41597-020-00628-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
31 Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can Beta-2-Adrenergic Pathway Be a New Target to Combat SARS-CoV-2 Hyperinflammatory Syndrome?-Lessons Learned From Cancer. Front Immunol 2020;11:588724. [PMID: 33117402 DOI: 10.3389/fimmu.2020.588724] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
32 Mo Y, Fisher D. A review of treatment modalities for Middle East Respiratory Syndrome. J Antimicrob Chemother. 2016;71:3340-3350. [PMID: 27585965 DOI: 10.1093/jac/dkw338] [Cited by in Crossref: 67] [Cited by in F6Publishing: 64] [Article Influence: 11.2] [Reference Citation Analysis]
33 Cherian SS, Agrawal M, Basu A, Abraham P, Gangakhedkar RR, Bhargava B. Perspectives for repurposing drugs for the coronavirus disease 2019. Indian J Med Res 2020;151:160-71. [PMID: 32317408 DOI: 10.4103/ijmr.IJMR_585_20] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
34 Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19: A review. World J Gastroenterol 2021; 27(1): 37-54 [PMID: 33505149 DOI: 10.3748/wjg.v27.i1.37] [Cited by in CrossRef: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Friedman N, Jacob-Hirsch J, Drori Y, Eran E, Kol N, Nayshool O, Mendelson E, Rechavi G, Mandelboim M. Transcriptomic profiling and genomic mutational analysis of Human coronavirus (HCoV)-229E -infected human cells. PLoS One 2021;16:e0247128. [PMID: 33630927 DOI: 10.1371/journal.pone.0247128] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
36 Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F. Modulation of the immune response by Middle East respiratory syndrome coronavirus. J Cell Physiol. 2019;234:2143-2151. [PMID: 30146782 DOI: 10.1002/jcp.27155] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 12.3] [Reference Citation Analysis]
37 Liu X, Huuskonen S, Laitinen T, Redchuk T, Bogacheva M, Salokas K, Pöhner I, Öhman T, Tonduru AK, Hassinen A, Gawriyski L, Keskitalo S, Vartiainen MK, Pietiäinen V, Poso A, Varjosalo M. SARS-CoV-2-host proteome interactions for antiviral drug discovery. Mol Syst Biol 2021;17:e10396. [PMID: 34709727 DOI: 10.15252/msb.202110396] [Reference Citation Analysis]
38 Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK, Murray J, Queen K, Tao Y, Paden CR, Zhang J, Li Y, Uehara A, Wang H, Goldsmith C, Bullock HA, Wang L, Whitaker B, Lynch B, Gautam R, Schindewolf C, Lokugamage KG, Scharton D, Plante JA, Mirchandani D, Widen SG, Narayanan K, Makino S, Ksiazek TG, Plante KS, Weaver SC, Lindstrom S, Tong S, Menachery VD, Thornburg NJ. Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. bioRxiv 2020:2020. [PMID: 32511316 DOI: 10.1101/2020.03.02.972935] [Cited by in Crossref: 49] [Cited by in F6Publishing: 11] [Article Influence: 24.5] [Reference Citation Analysis]
39 Arebro J, Tengroth L, Razavi R, Kumlien Georén S, Winqvist O, Cardell LO. Antigen-presenting epithelial cells can play a pivotal role in airway allergy. J Allergy Clin Immunol 2016;137:957-60.e7. [PMID: 26560042 DOI: 10.1016/j.jaci.2015.08.053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
40 Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol 2020;11:1949. [PMID: 32849654 DOI: 10.3389/fimmu.2020.01949] [Cited by in Crossref: 90] [Cited by in F6Publishing: 72] [Article Influence: 45.0] [Reference Citation Analysis]
41 Farzi R, Aghbash PS, Eslami N, Azadi A, Shamekh A, Hemmat N, Entezari-Maleki T, Baghi HB. The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 2022;233:153848. [PMID: 35338971 DOI: 10.1016/j.prp.2022.153848] [Reference Citation Analysis]
42 Shang Y, Liu T, Wei Y, Li J, Shao L, Liu M, Zhang Y, Zhao Z, Xu H, Peng Z, Zhou F, Wang X. Scoring systems for predicting mortality for severe patients with COVID-19. EClinicalMedicine 2020;24:100426. [PMID: 32766541 DOI: 10.1016/j.eclinm.2020.100426] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 20.5] [Reference Citation Analysis]
43 VanLeuven JT, Ridenhour BJ, Gonzalez AJ, Miller CR, Miura TA. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses. PLoS One 2017;12:e0178408. [PMID: 28575086 DOI: 10.1371/journal.pone.0178408] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
44 Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 2020;53:248-63. [PMID: 32717182 DOI: 10.1016/j.immuni.2020.07.005] [Cited by in Crossref: 126] [Cited by in F6Publishing: 110] [Article Influence: 63.0] [Reference Citation Analysis]
45 Chaube R. Vaccine against SARS-CoV-2: Challenges and considerations. Can Commun Dis Rep 2021;47:128-31. [PMID: 34012335 DOI: 10.14745/ccdr.v47i03a01] [Reference Citation Analysis]
46 Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther 2021;6:255. [PMID: 34234112 DOI: 10.1038/s41392-021-00679-0] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
47 Zolfaghari Emameh R, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol Proced Online 2020;22:16. [PMID: 32754004 DOI: 10.1186/s12575-020-00127-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
48 Josset L, Zeng H, Kelly SM, Tumpey TM, Katze MG. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. mBio 2014;5:e01102-13. [PMID: 24496798 DOI: 10.1128/mBio.01102-13] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 5.1] [Reference Citation Analysis]
49 Tiwari-Heckler S, Rauber C, Longhi MS, Zörnig I, Schnitzler P, Jäger D, Giese T, Merle U. Dysregulated Host Response in Severe Acute Respiratory Syndrome Coronavirus 2-Induced Critical Illness. Open Forum Infect Dis 2021;8:ofab019. [PMID: 33778090 DOI: 10.1093/ofid/ofab019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Batool M, Shah M, Patra MC, Yesudhas D, Choi S. Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism. Sci Rep 2017;7:11362. [PMID: 28900197 DOI: 10.1038/s41598-017-11736-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
51 Khalil BA, Shakartalla SB, Goel S, Madkhana B, Halwani R, Maghazachi AA, Alsafar H, Al-omari B, Al Bataineh MT. Immune Profiling of COVID-19 in Correlation with SARS and MERS. Viruses 2022;14:164. [DOI: 10.3390/v14010164] [Reference Citation Analysis]
52 Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G, Seco J, Tirinato L. ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection? Front Mol Biosci 2020;7:578964. [PMID: 33134318 DOI: 10.3389/fmolb.2020.578964] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
53 de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523-534. [PMID: 27344959 DOI: 10.1038/nrmicro.2016.81] [Cited by in Crossref: 1666] [Cited by in F6Publishing: 1484] [Article Influence: 277.7] [Reference Citation Analysis]
54 Nash G, Paidimuddala B, Zhang L. Structural aspects of the MHC expression control system. Biophysical Chemistry 2022. [DOI: 10.1016/j.bpc.2022.106781] [Reference Citation Analysis]
55 Virlogeux V, Yang J, Fang VJ, Feng L, Tsang TK, Jiang H, Wu P, Zheng J, Lau EH, Qin Y, Peng Z, Peiris JS, Yu H, Cowling BJ. Association between the Severity of Influenza A(H7N9) Virus Infections and Length of the Incubation Period. PLoS One 2016;11:e0148506. [PMID: 26885816 DOI: 10.1371/journal.pone.0148506] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
56 Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol 2020;108:17-41. [PMID: 32534467 DOI: 10.1002/JLB.3COVR0520-272R] [Cited by in Crossref: 206] [Cited by in F6Publishing: 144] [Article Influence: 103.0] [Reference Citation Analysis]
57 Coleman CM, Frieman MB. Emergence of the Middle East respiratory syndrome coronavirus. PLoS Pathog 2013;9:e1003595. [PMID: 24039577 DOI: 10.1371/journal.ppat.1003595] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
58 Muruato A, Vu MN, Johnson BA, Davis-Gardner ME, Vanderheiden A, Lokugamage K, Schindewolf C, Crocquet-Valdes PA, Langsjoen RM, Plante JA, Plante KS, Weaver SC, Debbink K, Routh AL, Walker D, Suthar MS, Shi PY, Xie X, Menachery VD. Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biol 2021;19:e3001284. [PMID: 34735434 DOI: 10.1371/journal.pbio.3001284] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Gerges Harb J, Noureldine HA, Chedid G, Eldine MN, Abdallah DA, Chedid NF, Nour-Eldine W. SARS, MERS and COVID-19: clinical manifestations and organ-system complications: a mini review. Pathog Dis 2020;78:ftaa033. [PMID: 32633327 DOI: 10.1093/femspd/ftaa033] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
60 Bibert S, Guex N, Lourenco J, Brahier T, Papadimitriou-Olivgeris M, Damonti L, Manuel O, Liechti R, Götz L, Tschopp J, Quinodoz M, Vollenweider P, Pagani JL, Oddo M, Hügli O, Lamoth F, Erard V, Voide C, Delorenzi M, Rufer N, Candotti F, Rivolta C, Boillat-Blanco N, Bochud PY; RegCOVID Study Group. Transcriptomic Signature Differences Between SARS-CoV-2 and Influenza Virus Infected Patients. Front Immunol 2021;12:666163. [PMID: 34135895 DOI: 10.3389/fimmu.2021.666163] [Reference Citation Analysis]
61 Mubarak A, Alturaiki W, Hemida MG. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J Immunol Res. 2019;2019:6491738. [PMID: 31089478 DOI: 10.1155/2019/6491738] [Cited by in Crossref: 87] [Cited by in F6Publishing: 86] [Article Influence: 29.0] [Reference Citation Analysis]
62 The WHO Mers-Cov Research Group. State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS Curr. 2013;5. [PMID: 24270606 DOI: 10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8] [Cited by in Crossref: 77] [Cited by in F6Publishing: 200] [Article Influence: 8.6] [Reference Citation Analysis]
63 Johnson BA, Hage A, Kalveram B, Mears M, Plante JA, Rodriguez SE, Ding Z, Luo X, Bente D, Bradrick SS, Freiberg AN, Popov V, Rajsbaum R, Rossi S, Russell WK, Menachery VD. Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity. J Virol 2019;93:e01282-19. [PMID: 31462558 DOI: 10.1128/JVI.01282-19] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
64 Luo C, Qu H, Ma J, Wang J, Hu X, Li N, Shu D. A genome-wide association study identifies major loci affecting the immune response against infectious bronchitis virus in chicken. Infect Genet Evol 2014;21:351-8. [PMID: 24333371 DOI: 10.1016/j.meegid.2013.12.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
65 Abdel-Moneim AS. Middle East respiratory syndrome coronavirus (MERS-CoV): evidence and speculations. Arch Virol 2014;159:1575-84. [PMID: 24515532 DOI: 10.1007/s00705-014-1995-5] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
66 Cai W, Marouf N, Said KN, Tamimi F. Nature of the Interplay Between Periodontal Diseases and COVID-19. Front Dent Med 2021;2:735126. [DOI: 10.3389/fdmed.2021.735126] [Reference Citation Analysis]
67 Ansariniya H, Seifati SM, Zaker E, Zare F. Comparison of Immune Response between SARS, MERS, and COVID-19 Infection, Perspective on Vaccine Design and Development. Biomed Res Int 2021;2021:8870425. [PMID: 33564683 DOI: 10.1155/2021/8870425] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Guery B, van der Werf S. Coronavirus: need for a therapeutic approach. Lancet Infect Dis 2013;13:726-7. [PMID: 23782860 DOI: 10.1016/S1473-3099(13)70153-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
69 Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8-13. [PMID: 29414327 DOI: 10.1016/j.cyto.2018.01.025] [Cited by in Crossref: 318] [Cited by in F6Publishing: 303] [Article Influence: 79.5] [Reference Citation Analysis]
70 Chen Y, Rajashankar KR, Yang Y, Agnihothram SS, Liu C, Lin YL, Baric RS, Li F. Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus. J Virol 2013;87:10777-83. [PMID: 23903833 DOI: 10.1128/JVI.01756-13] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 9.7] [Reference Citation Analysis]
71 Zhou Y, Hou Y, Shen J, Kallianpur A, Zein J, Culver DA, Farha S, Comhair S, Fiocchi C, Gack MU, Mehra R, Stappenbeck T, Chan T, Eng C, Jung JU, Jehi L, Erzurum S, Cheng F. A Network Medicine Approach to Investigation and Population-based Validation of Disease Manifestations and Drug Repurposing for COVID-19. ChemRxiv 2020. [PMID: 32676577 DOI: 10.26434/chemrxiv.12579137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
72 Liu T, Luo S, Libby P, Shi GP. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol Ther 2020;213:107587. [PMID: 32470470 DOI: 10.1016/j.pharmthera.2020.107587] [Cited by in Crossref: 96] [Cited by in F6Publishing: 83] [Article Influence: 48.0] [Reference Citation Analysis]
73 McDermott JE, Mitchell HD, Gralinski LE, Eisfeld AJ, Josset L, Bankhead A 3rd, Neumann G, Tilton SC, Schäfer A, Li C, Fan S, McWeeney S, Baric RS, Katze MG, Waters KM. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC Syst Biol 2016;10:93. [PMID: 27663205 DOI: 10.1186/s12918-016-0336-6] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
74 de Souza Silva GA, da Silva SP, da Costa MAS, da Silva AR, de Vasconcelos Alves RR, Ângelo Mendes Tenório FDC, da Silva Melo AR, de Freitas AC, Lagos de Melo CM. SARS-CoV, MERS-CoV and SARS-CoV-2 infections in pregnancy and fetal development. J Gynecol Obstet Hum Reprod 2020;:101846. [PMID: 32599304 DOI: 10.1016/j.jogoh.2020.101846] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
75 Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, Wise M, Patel A, Izmirly A, Aljuaid A, Seliga AM, Soule G, Morrow M, Kraynyak KA, Khan AS, Scott DP, Feldmann F, LaCasse R, Meade-White K, Okumura A, Ugen KE, Sardesai NY, Kim JJ, Kobinger G, Feldmann H, Weiner DB. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 2015;7:301ra132. [PMID: 26290414 DOI: 10.1126/scitranslmed.aac7462] [Cited by in Crossref: 159] [Cited by in F6Publishing: 157] [Article Influence: 26.5] [Reference Citation Analysis]
76 Liang R, Wang L, Zhang N, Deng X, Su M, Su Y, Hu L, He C, Ying T, Jiang S, Yu F. Development of Small-Molecule MERS-CoV Inhibitors. Viruses 2018;10:E721. [PMID: 30562987 DOI: 10.3390/v10120721] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
77 Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A, Baghbanzadeh A, Baghi HB, Javadrashid D, Najafi S, Ar Gouilh M, Baradaran B. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch Virol 2021;166:675-96. [PMID: 33462671 DOI: 10.1007/s00705-021-04958-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
78 Dyall J, Gross R, Kindrachuk J, Johnson RF, Olinger GG Jr, Hensley LE, Frieman MB, Jahrling PB. Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic Options and Potential Targets for Novel Therapies. Drugs. 2017;77:1935-1966. [PMID: 29143192 DOI: 10.1007/s40265-017-0830-1] [Cited by in Crossref: 109] [Cited by in F6Publishing: 89] [Article Influence: 27.3] [Reference Citation Analysis]
79 Sun J, Ye F, Wu A, Yang R, Pan M, Sheng J, Zhu W, Mao L, Wang M, Xia Z, Huang B, Tan W, Jiang T. Comparative Transcriptome Analysis Reveals the Intensive Early Stage Responses of Host Cells to SARS-CoV-2 Infection. Front Microbiol 2020;11:593857. [PMID: 33324374 DOI: 10.3389/fmicb.2020.593857] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 12.5] [Reference Citation Analysis]
80 Liatsos GD. Controversies’ clarification regarding ribavirin efficacy in measles and coronaviruses: Comprehensive therapeutic approach strictly tailored to COVID-19 disease stages. World J Clin Cases 2021; 9(19): 5135-5178 [PMID: 34307564 DOI: 10.12998/wjcc.v9.i19.5135] [Reference Citation Analysis]
81 Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020;54:62-75. [PMID: 32513566 DOI: 10.1016/j.cytogfr.2020.06.001] [Cited by in Crossref: 252] [Cited by in F6Publishing: 219] [Article Influence: 126.0] [Reference Citation Analysis]
82 Shibabaw T. Inflammatory Cytokine: IL-17A Signaling Pathway in Patients Present with COVID-19 and Current Treatment Strategy. J Inflamm Res 2020;13:673-80. [PMID: 33116747 DOI: 10.2147/JIR.S278335] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
83 Velikova TV, Kotsev SV, Georgiev DS, Batselova HM. Immunological aspects of COVID-19: What do we know? World J Biol Chem 2020; 11(2): 14-29 [PMID: 33024515 DOI: 10.4331/wjbc.v11.i2.14] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
84 Anaeigoudari A, Mollaei HR, Arababadi MK, Nosratabadi R. Severe Acute Respiratory Syndrome Coronavirus 2: The Role of the Main Components of the Innate Immune System. Inflammation 2021. [PMID: 34524614 DOI: 10.1007/s10753-021-01519-7] [Reference Citation Analysis]
85 Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology. 2014;450-451:64-70. [PMID: 24503068 DOI: 10.1016/j.virol.2013.11.040] [Cited by in Crossref: 136] [Cited by in F6Publishing: 124] [Article Influence: 15.1] [Reference Citation Analysis]
86 Zhang Y, Gargan S, Lu Y, Stevenson NJ. An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses 2021;13:560. [PMID: 33810391 DOI: 10.3390/v13040560] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
87 Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res 2014;194:191-9. [PMID: 25278144 DOI: 10.1016/j.virusres.2014.09.009] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
88 Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. [PMID: 32194980 DOI: 10.1038/s41421-020-0153-3] [Cited by in Crossref: 655] [Cited by in F6Publishing: 618] [Article Influence: 327.5] [Reference Citation Analysis]
89 Merkel OM. Can pulmonary RNA delivery improve our pandemic preparedness? Journal of Controlled Release 2022;345:549-56. [DOI: 10.1016/j.jconrel.2022.03.039] [Reference Citation Analysis]
90 Krishnamoorthy P, Raj AS, Roy S, Kumar NS, Kumar H. Comparative transcriptome analysis of SARS-CoV, MERS-CoV, and SARS-CoV-2 to identify potential pathways for drug repurposing. Comput Biol Med 2021;128:104123. [PMID: 33260034 DOI: 10.1016/j.compbiomed.2020.104123] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
91 Johnson BA, Xie X, Kalveram B, Lokugamage KG, Muruato A, Zou J, Zhang X, Juelich T, Smith JK, Zhang L, Bopp N, Schindewolf C, Vu M, Vanderheiden A, Swetnam D, Plante JA, Aguilar P, Plante KS, Lee B, Weaver SC, Suthar MS, Routh AL, Ren P, Ku Z, An Z, Debbink K, Shi PY, Freiberg AN, Menachery VD. Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis. bioRxiv 2020:2020. [PMID: 32869021 DOI: 10.1101/2020.08.26.268854] [Cited by in Crossref: 44] [Cited by in F6Publishing: 11] [Article Influence: 22.0] [Reference Citation Analysis]
92 Monji F, Al-Mahmood Siddiquee A, Hashemian F. Can pentoxifylline and similar xanthine derivatives find a niche in COVID-19 therapeutic strategies? A ray of hope in the midst of the pandemic. Eur J Pharmacol 2020;887:173561. [PMID: 32946870 DOI: 10.1016/j.ejphar.2020.173561] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
93 Pourgholaminejad A, Pahlavanneshan S, Basiri M. COVID-19 immunopathology with emphasis on Th17 response and cell-based immunomodulation therapy: Potential targets and challenges. Scand J Immunol 2021;:e13131. [PMID: 34936112 DOI: 10.1111/sji.13131] [Reference Citation Analysis]
94 Asrani P, Hassan MI. SARS-CoV-2 mediated lung inflammatory responses in host: targeting the cytokine storm for therapeutic interventions. Mol Cell Biochem 2021;476:675-87. [PMID: 33064288 DOI: 10.1007/s11010-020-03935-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
95 Jiang Y, Zhao G, Song N, Li P, Chen Y, Guo Y, Li J, Du L, Jiang S, Guo R, Sun S, Zhou Y. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect 2018;7:77. [PMID: 29691378 DOI: 10.1038/s41426-018-0063-8] [Cited by in Crossref: 86] [Cited by in F6Publishing: 106] [Article Influence: 21.5] [Reference Citation Analysis]
96 Pombo JP, Sanyal S. Perturbation of Intracellular Cholesterol and Fatty Acid Homeostasis During Flavivirus Infections. Front Immunol 2018;9:1276. [PMID: 29915602 DOI: 10.3389/fimmu.2018.01276] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
97 Falcinelli SD, Chertow DS, Kindrachuk J. Integration of Global Analyses of Host Molecular Responses with Clinical Data To Evaluate Pathogenesis and Advance Therapies for Emerging and Re-emerging Viral Infections. ACS Infect Dis 2016;2:787-99. [PMID: 27933782 DOI: 10.1021/acsinfecdis.6b00104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
98 Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, Olinger GG, Hensley LE, Jahrling PB. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother. 2015;59:1088-1099. [PMID: 25487801 DOI: 10.1128/aac.03659-14] [Cited by in Crossref: 193] [Cited by in F6Publishing: 155] [Article Influence: 24.1] [Reference Citation Analysis]
99 Lin A, Yan WH. Perspective of HLA-G Induced Immunosuppression in SARS-CoV-2 Infection. Front Immunol 2021;12:788769. [PMID: 34938296 DOI: 10.3389/fimmu.2021.788769] [Reference Citation Analysis]
100 Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020. [PMID: 33173860 DOI: 10.1002/mco2.26] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Wu J, Yuan X, Wang B, Gu R, Li W, Xiang X, Tang L, Sun H. Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Front Microbiol 2020;11:1576. [PMID: 32719672 DOI: 10.3389/fmicb.2020.01576] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
102 Menachery VD, Mitchell HD, Cockrell AS, Gralinski LE, Yount BL Jr, Graham RL, McAnarney ET, Douglas MG, Scobey T, Beall A, Dinnon K 3rd, Kocher JF, Hale AE, Stratton KG, Waters KM, Baric RS. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis. mBio 2017;8:e00665-17. [PMID: 28830941 DOI: 10.1128/mBio.00665-17] [Cited by in Crossref: 80] [Cited by in F6Publishing: 68] [Article Influence: 16.0] [Reference Citation Analysis]
103 Kilianski A, Baker SC. Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. Antiviral Res 2014;101:105-12. [PMID: 24269477 DOI: 10.1016/j.antiviral.2013.11.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
104 Arabi YM, Balkhy HH, Hayden FG, Bouchama A, Luke T, Baillie JK, Al-Omari A, Hajeer AH, Senga M, Denison MR, Nguyen-Van-Tam JS, Shindo N, Bermingham A, Chappell JD, Van Kerkhove MD, Fowler RA. Middle East Respiratory Syndrome. N Engl J Med 2017;376:584-94. [PMID: 28177862 DOI: 10.1056/NEJMsr1408795] [Cited by in Crossref: 240] [Cited by in F6Publishing: 179] [Article Influence: 48.0] [Reference Citation Analysis]
105 Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327-347. [PMID: 26868298 DOI: 10.1038/nrd.2015.37] [Cited by in Crossref: 849] [Cited by in F6Publishing: 775] [Article Influence: 141.5] [Reference Citation Analysis]
106 de Wit E, Rasmussen AL, Feldmann F, Bushmaker T, Martellaro C, Haddock E, Okumura A, Proll SC, Chang J, Gardner D, Katze MG, Munster VJ, Feldmann H. Influenza virus A/Anhui/1/2013 (H7N9) replicates efficiently in the upper and lower respiratory tracts of cynomolgus macaques. mBio 2014;5:e01331-14. [PMID: 25118237 DOI: 10.1128/mBio.01331-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
107 Poissy J, Goffard A, Parmentier-Decrucq E, Favory R, Kauv M, Kipnis E, Mathieu D, van der Werf S, Guery B; MERS-CoV Biology Group. Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol 2014;61:275-8. [PMID: 25073585 DOI: 10.1016/j.jcv.2014.07.002] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 7.6] [Reference Citation Analysis]
108 Law GL, Tisoncik-Go J, Korth MJ, Katze MG. Drug repurposing: a better approach for infectious disease drug discovery? Curr Opin Immunol 2013;25:588-92. [PMID: 24011665 DOI: 10.1016/j.coi.2013.08.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 5.1] [Reference Citation Analysis]
109 Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK, Murray J, Queen K, Tao Y, Paden CR, Zhang J, Li Y, Uehara A, Wang H, Goldsmith C, Bullock HA, Wang L, Whitaker B, Lynch B, Gautam R, Schindewolf C, Lokugamage KG, Scharton D, Plante JA, Mirchandani D, Widen SG, Narayanan K, Makino S, Ksiazek TG, Plante KS, Weaver SC, Lindstrom S, Tong S, Menachery VD, Thornburg NJ. Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. Emerg Infect Dis 2020;26:1266-73. [PMID: 32160149 DOI: 10.3201/eid2606.200516] [Cited by in Crossref: 257] [Cited by in F6Publishing: 237] [Article Influence: 128.5] [Reference Citation Analysis]
110 Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 2020;53:248-63. [PMID: 32717182 DOI: 10.1016/j.immuni.2020.07.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Infect Public Health 2018;11:9-17. [PMID: 28864360 DOI: 10.1016/j.jiph.2017.08.009] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 13.4] [Reference Citation Analysis]
112 Gao H, Yao H, Yang S, Li L. From SARS to MERS: evidence and speculation. Front Med 2016;10:377-82. [PMID: 27726088 DOI: 10.1007/s11684-016-0466-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 4.2] [Reference Citation Analysis]
113 Mubarak A, Alrfaei B, Aljurayyan A, Alqafil MM, Farrag MA, Hamed ME, Alosaimi B, Almajhdi F, Alturaiki W. In vivo and in vitro Evaluation of Cytokine Expression Profiles During Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection. J Inflamm Res 2021;14:2121-31. [PMID: 34045884 DOI: 10.2147/JIR.S312337] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, Fiocchi C, Stappenbeck T, Chan T, Eng C, Jung JU, Jehi L, Erzurum S, Cheng F. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol 2020;18:e3000970. [PMID: 33156843 DOI: 10.1371/journal.pbio.3000970] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 20.0] [Reference Citation Analysis]
115 Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, Bortolotti P, Martinez L, Dubucquoi S, Dessein R, Gosset P, Mathieu D, Guery B. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS One 2014;9:e88716. [PMID: 24551142 DOI: 10.1371/journal.pone.0088716] [Cited by in Crossref: 157] [Cited by in F6Publishing: 153] [Article Influence: 19.6] [Reference Citation Analysis]
116 Agnihothram S, Yount BL Jr, Donaldson EF, Huynh J, Menachery VD, Gralinski LE, Graham RL, Becker MM, Tomar S, Scobey TD, Osswald HL, Whitmore A, Gopal R, Ghosh AK, Mesecar A, Zambon M, Heise M, Denison MR, Baric RS. A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant. mBio 2014;5:e00047-14. [PMID: 24667706 DOI: 10.1128/mBio.00047-14] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
117 Menachery VD, Schäfer A, Burnum-Johnson KE, Mitchell HD, Eisfeld AJ, Walters KB, Nicora CD, Purvine SO, Casey CP, Monroe ME, Weitz KK, Stratton KG, Webb-Robertson BM, Gralinski LE, Metz TO, Smith RD, Waters KM, Sims AC, Kawaoka Y, Baric RS. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Natl Acad Sci U S A 2018;115:E1012-21. [PMID: 29339515 DOI: 10.1073/pnas.1706928115] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 19.5] [Reference Citation Analysis]
118 Wiche Salinas TR, Zheng B, Routy JP, Ancuta P. Targeting the interleukin-17 pathway to prevent acute respiratory distress syndrome associated with SARS-CoV-2 infection. Respirology. 2020;25:797-799. [PMID: 32557955 DOI: 10.1111/resp.13875] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
119 Martonik D, Parfieniuk-Kowerda A, Rogalska M, Flisiak R. The Role of Th17 Response in COVID-19. Cells 2021;10:1550. [PMID: 34205262 DOI: 10.3390/cells10061550] [Reference Citation Analysis]
120 Jonsdottir HR, Dijkman R. Coronaviruses and the human airway: a universal system for virus-host interaction studies. Virol J 2016;13:24. [PMID: 26852031 DOI: 10.1186/s12985-016-0479-5] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 8.8] [Reference Citation Analysis]
121 Ramakrishnan RK, Al Heialy S, Hamid Q. Implications of preexisting asthma on COVID-19 pathogenesis. Am J Physiol Lung Cell Mol Physiol 2021;320:L880-91. [PMID: 33759572 DOI: 10.1152/ajplung.00547.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
122 Kudryavtsev I, Rubinstein A, Golovkin A, Kalinina O, Vasilyev K, Rudenko L, Isakova-sivak I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses 2022;14:1082. [DOI: 10.3390/v14051082] [Reference Citation Analysis]
123 Crespo-Facorro B, Ruiz-Veguilla M, Vázquez-Bourgon J, Sánchez-Hidalgo AC, Garrido-Torres N, Cisneros JM, Prieto C, Sainz J. Aripiprazole as a Candidate Treatment of COVID-19 Identified Through Genomic Analysis. Front Pharmacol 2021;12:646701. [PMID: 33762960 DOI: 10.3389/fphar.2021.646701] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
124 El Baba R, Herbein G. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin Epigenetics 2020;12:118. [PMID: 32758273 DOI: 10.1186/s13148-020-00912-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
125 Wang X, Xin B, Tan W, Xu Z, Li K, Li F, Zhong W, Peng S. DeepR2cov: deep representation learning on heterogeneous drug networks to discover anti-inflammatory agents for COVID-19. Brief Bioinform 2021:bbab226. [PMID: 34117734 DOI: 10.1093/bib/bbab226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Ababneh M, Alrwashdeh M, Khalifeh M. Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East Respiratory Syndrome Coronavirus elicits strong humoral and cellular immune responses in mice. Vet World. 2019;12:1554-1562. [PMID: 31849416 DOI: 10.14202/vetworld.2019.1554-1562] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
127 Miura TA. Respiratory epithelial cells as master communicators during viral infections. Curr Clin Microbiol Rep 2019;6:10-7. [PMID: 31592409 DOI: 10.1007/s40588-019-0111-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
128 Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020;25:668-88. [PMID: 32006468 DOI: 10.1016/j.drudis.2020.01.015] [Cited by in Crossref: 146] [Cited by in F6Publishing: 143] [Article Influence: 73.0] [Reference Citation Analysis]
129 Ad'hiah AH, Al-bayatee NT. HLA-G 14-bp insertion/deletion polymorphism and risk of coronavirus disease 2019 (COVID-19) among Iraqi patients. Human Immunology 2022. [DOI: 10.1016/j.humimm.2022.03.005] [Reference Citation Analysis]
130 Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021;44:e20210036. [PMID: 34436508 DOI: 10.1590/1678-4685-GMB-2021-0036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Menachery VD, Eisfeld AJ, Schäfer A, Josset L, Sims AC, Proll S, Fan S, Li C, Neumann G, Tilton SC, Chang J, Gralinski LE, Long C, Green R, Williams CM, Weiss J, Matzke MM, Webb-Robertson BJ, Schepmoes AA, Shukla AK, Metz TO, Smith RD, Waters KM, Katze MG, Kawaoka Y, Baric RS. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. mBio 2014;5:e01174-14. [PMID: 24846384 DOI: 10.1128/mBio.01174-14] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 21.0] [Reference Citation Analysis]
132 Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020;37:167. [PMID: 32778962 DOI: 10.1007/s11095-020-02851-7] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 19.5] [Reference Citation Analysis]
133 Tynell J, Westenius V, Rönkkö E, Munster VJ, Melén K, Österlund P, Julkunen I. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol 2016;97:344-55. [PMID: 26602089 DOI: 10.1099/jgv.0.000351] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 7.9] [Reference Citation Analysis]
134 Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? Journal of Traditional Chinese Medical Sciences 2021;8:267-79. [DOI: 10.1016/j.jtcms.2021.10.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Lokugamage KG, Hage A, de Vries M, Valero-Jimenez AM, Schindewolf C, Dittmann M, Rajsbaum R, Menachery VD. Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. J Virol 2020;94:e01410-20. [PMID: 32938761 DOI: 10.1128/JVI.01410-20] [Cited by in Crossref: 93] [Cited by in F6Publishing: 75] [Article Influence: 46.5] [Reference Citation Analysis]
136 Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28:465-522. [PMID: 25810418 DOI: 10.1128/cmr.00102-14] [Cited by in Crossref: 489] [Cited by in F6Publishing: 370] [Article Influence: 69.9] [Reference Citation Analysis]
137 Cuong HQ, Hai ND, Linh HT, Hieu NT, Anh NH, Ton T, Dong TC, Thao VT, Tuoi DTH, Tuan ND, Loan HTK, Long NT, Thang CM, Thao NTT, Lan PT. The Production of Standardized Samples with Known Concentrations for Severe Acute Respiratory Syndrome Coronavirus 2 RT-qPCR Testing Validation for Developing Countries in the Period of the Pandemic Era. Biomed Res Int 2021;2021:5516344. [PMID: 34368349 DOI: 10.1155/2021/5516344] [Reference Citation Analysis]
138 Ying T, Li W, Dimitrov DS. Discovery of T-Cell Infection and Apoptosis by Middle East Respiratory Syndrome Coronavirus. J Infect Dis 2016;213:877-9. [PMID: 26203059 DOI: 10.1093/infdis/jiv381] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
139 Mackay IM, Arden KE. Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd. Virus Res 2015;202:60-88. [PMID: 25656066 DOI: 10.1016/j.virusres.2015.01.021] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
140 Gul MH, Htun ZM, Shaukat N, Imran M, Khan A. Potential specific therapies in COVID-19. Ther Adv Respir Dis. 2020;14:1753466620926853. [PMID: 32436445 DOI: 10.1177/1753466620926853] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
141 Alsamman AM, Zayed H. The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1. PLoS One 2020;15:e0243270. [PMID: 33301474 DOI: 10.1371/journal.pone.0243270] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
142 Tao X, Hill TE, Morimoto C, Peters CJ, Ksiazek TG, Tseng CT. Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells. J Virol 2013;87:9953-8. [PMID: 23824802 DOI: 10.1128/JVI.01562-13] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
143 Allegra A, Di Gioacchino M, Tonacci A, Musolino C, Gangemi S. Immunopathology of SARS-CoV-2 Infection: Immune Cells and Mediators, Prognostic Factors, and Immune-Therapeutic Implications. Int J Mol Sci 2020;21:E4782. [PMID: 32640747 DOI: 10.3390/ijms21134782] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 15.5] [Reference Citation Analysis]
144 Azimirad M, Noori M, Raeisi H, Yadegar A, Shahrokh S, Asadzadeh Aghdaei H, Bentivegna E, Martelletti P, Petrosillo N, Zali MR. How Does COVID-19 Pandemic Impact on Incidence of Clostridioides difficile Infection and Exacerbation of Its Gastrointestinal Symptoms? Front Med (Lausanne) 2021;8:775063. [PMID: 34966759 DOI: 10.3389/fmed.2021.775063] [Reference Citation Analysis]
145 Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53:368-370. [PMID: 32205092 DOI: 10.1016/j.jmii.2020.03.005] [Cited by in Crossref: 356] [Cited by in F6Publishing: 330] [Article Influence: 178.0] [Reference Citation Analysis]
146 Islam MA, Albarracin L, Tomokiyo M, Valdez JC, Sacur J, Vizoso-Pinto MG, Andrade BGN, Cuadrat RRC, Kitazawa H, Villena J. Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection. Pathogens 2021;10:1197. [PMID: 34578229 DOI: 10.3390/pathogens10091197] [Reference Citation Analysis]
147 Lu L, Liu Q, Du L, Jiang S. Middle East respiratory syndrome coronavirus (MERS-CoV): challenges in identifying its source and controlling its spread. Microbes Infect. 2013;15:625-629. [PMID: 23791956 DOI: 10.1016/j.micinf.2013.06.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 6.2] [Reference Citation Analysis]
148 Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid-19: Perspectives on Innate Immune Evasion. Front Immunol 2020;11:580641. [PMID: 33101306 DOI: 10.3389/fimmu.2020.580641] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 16.5] [Reference Citation Analysis]
149 Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Müller H, Beuerlein K, Karl N, Bhuju S, Ziebuhr J, Schmitz ML, Kracht M. The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog 2017;13:e1006286. [PMID: 28355270 DOI: 10.1371/journal.ppat.1006286] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 8.8] [Reference Citation Analysis]
150 Cong Y, Ren X. Coronavirus entry and release in polarized epithelial cells: a review. Rev Med Virol. 2014;24:308-315. [PMID: 24737708 DOI: 10.1002/rmv.1792] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
151 Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021:fuaa066. [PMID: 33512504 DOI: 10.1093/femsre/fuaa066] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
152 Shum KT, Zhou J, Rossi JJ. Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013;6:1507-42. [PMID: 24287493 DOI: 10.3390/ph6121507] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
153 Vafaeinezhad A, Atashzar MR, Baharlou R. The Immune Responses against Coronavirus Infections: Friend or Foe? Int Arch Allergy Immunol 2021;:1-14. [PMID: 33951640 DOI: 10.1159/000516038] [Reference Citation Analysis]
154 Hajjar SA, Memish ZA, McIntosh K. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): a perpetual challenge. Ann Saudi Med. 2013;33:427-436. [PMID: 24188935 DOI: 10.5144/0256-4947.2013.427] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
155 Singh SK. Middle East Respiratory Syndrome Virus Pathogenesis. Semin Respir Crit Care Med 2016;37:572-7. [PMID: 27486737 DOI: 10.1055/s-0036-1584796] [Cited by in Crossref: 30] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
156 Griffiths PD. Editorial: an anniversary and a new member of the family. Rev Med Virol 2013;23:211-2. [PMID: 23695996 DOI: 10.1002/rmv.1748] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
157 Shehata MM, Gomaa MR, Ali MA, Kayali G. Middle East respiratory syndrome coronavirus: a comprehensive review. Front Med 2016;10:120-36. [PMID: 26791756 DOI: 10.1007/s11684-016-0430-6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
158 Wollina U. Challenges of COVID-19 pandemic for dermatology. Dermatol Ther 2020;33:e13430. [PMID: 32314460 DOI: 10.1111/dth.13430] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
159 Schäfer A, Baric RS, Ferris MT. Systems approaches to Coronavirus pathogenesis. Curr Opin Virol 2014;6:61-9. [PMID: 24842079 DOI: 10.1016/j.coviro.2014.04.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
160 Menachery VD, Yount BL Jr, Josset L, Gralinski LE, Scobey T, Agnihothram S, Katze MG, Baric RS. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity. J Virol 2014;88:4251-64. [PMID: 24478444 DOI: 10.1128/JVI.03571-13] [Cited by in Crossref: 140] [Cited by in F6Publishing: 114] [Article Influence: 17.5] [Reference Citation Analysis]
161 Clark B, Poulton K. SARS-CoV-2: An immunogenetics call to arms. Int J Immunogenet 2020;47:319-23. [PMID: 32654378 DOI: 10.1111/iji.12504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
162 Aevermann BD, Pickett BE, Kumar S, Klem EB, Agnihothram S, Askovich PS, Bankhead A 3rd, Bolles M, Carter V, Chang J, Clauss TR, Dash P, Diercks AH, Eisfeld AJ, Ellis A, Fan S, Ferris MT, Gralinski LE, Green RR, Gritsenko MA, Hatta M, Heegel RA, Jacobs JM, Jeng S, Josset L, Kaiser SM, Kelly S, Law GL, Li C, Li J, Long C, Luna ML, Matzke M, McDermott J, Menachery V, Metz TO, Mitchell H, Monroe ME, Navarro G, Neumann G, Podyminogin RL, Purvine SO, Rosenberger CM, Sanders CJ, Schepmoes AA, Shukla AK, Sims A, Sova P, Tam VC, Tchitchek N, Thomas PG, Tilton SC, Totura A, Wang J, Webb-Robertson BJ, Wen J, Weiss JM, Yang F, Yount B, Zhang Q, McWeeney S, Smith RD, Waters KM, Kawaoka Y, Baric R, Aderem A, Katze MG, Scheuermann RH. A comprehensive collection of systems biology data characterizing the host response to viral infection. Sci Data 2014;1:140033. [PMID: 25977790 DOI: 10.1038/sdata.2014.33] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]