BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh RSP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021;:eabl4784. [PMID: 34726479 DOI: 10.1126/science.abl4784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu Y, Chigan J, Li J, Ding H, Sun L, Liu L, Hu Z, Yang K. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorganic Chemistry 2022;124:105799. [DOI: 10.1016/j.bioorg.2022.105799] [Reference Citation Analysis]
2 Ho WS, Zhang R, Tan YL, Chai CLL. COVID-19 and The Promise of Small Molecule Therapeutics: Are There Lessons to be Learnt? Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106201] [Reference Citation Analysis]
3 Gambacorta N, Caputo L, Quintieri L, Monaci L, Ciriaco F, Nicolotti O. Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease. Biomedicines 2022;10:1067. [DOI: 10.3390/biomedicines10051067] [Reference Citation Analysis]
4 Weber JM, Tran TH. Synthesizing Bioactive Molecules: Synergies between Drug Discovery Techniques and Astrobiology Research. ACS Earth Space Chem . [DOI: 10.1021/acsearthspacechem.1c00326] [Reference Citation Analysis]
5 Jin Y, Jeon S, Lee J, Kim S, Jang MS, Park CM, Song JH, Kim HR, Kwon S. Anticoronaviral Activity of the Natural Phloroglucinols, Dryocrassin ABBA and Filixic Acid ABA from the Rhizome of Dryopteris crassirhizoma by Targeting the Main Protease of SARS-CoV-2. Pharmaceutics 2022;14:376. [DOI: 10.3390/pharmaceutics14020376] [Reference Citation Analysis]
6 Anastassopoulou C, Hatziantoniou S, Boufidou F, Patrinos GP, Tsakris A. The Role of Oral Antivirals for COVID-19 Treatment in Shaping the Pandemic Landscape. JPM 2022;12:439. [DOI: 10.3390/jpm12030439] [Reference Citation Analysis]
7 Brogi S, Rossi S, Ibba R, Butini S, Calderone V, Campiani G, Gemma S. In Silico Analysis of Peptide-Based Derivatives Containing Bifunctional Warheads Engaging Prime and Non-Prime Subsites to Covalent Binding SARS-CoV-2 Main Protease (Mpro). Computation 2022;10:69. [DOI: 10.3390/computation10050069] [Reference Citation Analysis]
8 Di Chio C, Previti S, Amendola G, Ravichandran R, Wagner A, Cosconati S, Hellmich UA, Schirmeister T, Zappalà M, Ettari R. Development of novel dipeptide nitriles as inhibitors of rhodesain of Trypanosoma brucei rhodesiense. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114328] [Reference Citation Analysis]
9 Chuang S, Papp H, Kuczmog A, Eells R, Condor Capcha JM, Shehadeh LA, Jakab F, Buchwald P. Methylene Blue Is a Nonspecific Protein–Protein Interaction Inhibitor with Potential for Repurposing as an Antiviral for COVID-19. Pharmaceuticals 2022;15:621. [DOI: 10.3390/ph15050621] [Reference Citation Analysis]
10 Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O’brien DP, Pinto-fernández A. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules 2022;12:300. [DOI: 10.3390/biom12020300] [Reference Citation Analysis]
11 Alhadrami HA, Burgio G, Thissera B, Orfali R, Jiffri SE, Yaseen M, Sayed AM, Rateb ME. Neoechinulin A as a Promising SARS-CoV-2 Mpro Inhibitor: In Vitro and In Silico Study Showing the Ability of Simulations in Discerning Active from Inactive Enzyme Inhibitors. Marine Drugs 2022;20:163. [DOI: 10.3390/md20030163] [Reference Citation Analysis]
12 Malla TR, Brewitz L, Muntean DG, Aslam H, Owen CD, Salah E, Tumber A, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Schofield CJ. Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. J Med Chem 2022. [PMID: 35549342 DOI: 10.1021/acs.jmedchem.1c02214] [Reference Citation Analysis]
13 Ma C, Hu Y, Wang Y, Choza J, Wang J. Drug-Repurposing Screening Identified Tropifexor as a SARS-CoV-2 Papain-like Protease Inhibitor. ACS Infect Dis 2022. [PMID: 35404564 DOI: 10.1021/acsinfecdis.1c00629] [Reference Citation Analysis]
14 Heilmann E, Costacurta F, Geley S, Mogadashi SA, Volland A, Rupp B, Harris RS, von Laer D. A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition. Commun Biol 2022;5:391. [PMID: 35478219 DOI: 10.1038/s42003-022-03277-0] [Reference Citation Analysis]
15 Jin Y, Lee J, Jeon S, Kim S, Min JS, Kwon S. Natural Polyphenols, 1,2,3,4,6-O-Pentagalloyglucose and Proanthocyanidins, as Broad-Spectrum Anticoronaviral Inhibitors Targeting Mpro and RdRp of SARS-CoV-2. Biomedicines 2022;10:1170. [DOI: 10.3390/biomedicines10051170] [Reference Citation Analysis]
16 Quan BX, Shuai H, Xia AJ, Hou Y, Zeng R, Liu XL, Lin GF, Qiao JX, Li WP, Wang FL, Wang K, Zhou RJ, Yuen TT, Chen MX, Yoon C, Wu M, Zhang SY, Huang C, Wang YF, Yang W, Tian C, Li WM, Wei YQ, Yuen KY, Chan JF, Lei J, Chu H, Yang S. An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nat Microbiol 2022. [PMID: 35477751 DOI: 10.1038/s41564-022-01119-7] [Reference Citation Analysis]
17 Kato T, Lim B, Cheng Y, Pham A, Maynard J, Moreau D, Poblador-bahamonde AI, Sakai N, Matile S. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS Au. [DOI: 10.1021/jacsau.1c00573] [Reference Citation Analysis]
18 Singh G, Liu P, Yao KR, Strasser JM, Hlynialuk C, Leinonen-Wright K, Teravskis PJ, Choquette JM, Ikramuddin J, Bresinsky M, Nelson KM, Liao D, Ashe KH, Walters MA, Pockes S. Caspase-2 Inhibitor Blocks Tau Truncation and Restores Excitatory Neurotransmission in Neurons Modeling FTDP-17 Tauopathy. ACS Chem Neurosci 2022. [PMID: 35522720 DOI: 10.1021/acschemneuro.2c00100] [Reference Citation Analysis]
19 Gandhi RT, Malani PN, Del Rio C. COVID-19 Therapeutics for Nonhospitalized Patients. JAMA 2022. [PMID: 35029659 DOI: 10.1001/jama.2022.0335] [Reference Citation Analysis]
20 Jin Z, Yeung J, Zhou J, Cheng Y, Li Y, Mantri Y, He T, Yim W, Xu M, Wu Z, Fajtova P, Creyer MN, Moore C, Fu L, Penny WF, O’donoghue AJ, Jokerst JV. Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. Chem Mater . [DOI: 10.1021/acs.chemmater.1c03871] [Reference Citation Analysis]
21 Lin Q, Lu C, Hong Y, Li R, Chen J, Chen W, Chen J. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. Antiviral Research 2022. [DOI: 10.1016/j.antiviral.2022.105345] [Reference Citation Analysis]
22 Hernández González JE, Eberle RJ, Willbold D, Coronado MA. A Computer-Aided Approach for the Discovery of D-Peptides as Inhibitors of SARS-CoV-2 Main Protease. Front Mol Biosci 2022;8:816166. [DOI: 10.3389/fmolb.2021.816166] [Reference Citation Analysis]
23 Ma C, Tan H, Choza J, Wang Y, Wang J. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharm Sin B 2021. [PMID: 34745850 DOI: 10.1016/j.apsb.2021.10.026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Weil T, Lawrenz J, Seidel A, Münch J, Müller JA. Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antiviral Research 2022. [DOI: 10.1016/j.antiviral.2022.105343] [Reference Citation Analysis]
25 Nising CF, Nussbaum F. Industrial Organic Synthesis in Life Sciences – Today and Tomorrow. European J Organic Chem. [DOI: 10.1002/ejoc.202200252] [Reference Citation Analysis]
26 Lee J, Koepke L, Kirchhoff F, Sparrer KMJ. Interferon antagonists encoded by SARS-CoV-2 at a glance. Med Microbiol Immunol. [DOI: 10.1007/s00430-022-00734-9] [Reference Citation Analysis]
27 Ridgway H, Chasapis CT, Kelaidonis K, Ligielli I, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Mavromoustakos T, Matsoukas JM. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Viruses 2022;14:1029. [DOI: 10.3390/v14051029] [Reference Citation Analysis]
28 Stille JK, Tjutrins J, Wang G, Venegas FA, Hennecker C, Rueda AM, Sharon I, Blaine N, Miron CE, Pinus S, Labarre A, Plescia J, Burai Patrascu M, Zhang X, Wahba AS, Vlaho D, Huot MJ, Schmeing TM, Mittermaier AK, Moitessier N. Design, synthesis and in vitro evaluation of novel SARS-CoV-2 3CLpro covalent inhibitors. Eur J Med Chem 2021;229:114046. [PMID: 34995923 DOI: 10.1016/j.ejmech.2021.114046] [Reference Citation Analysis]
29 Vázquez-mendoza LH, Mendoza-figueroa HL, García-vázquez JB, Correa-basurto J, García-machorro J. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. IJMS 2022;23:3987. [DOI: 10.3390/ijms23073987] [Reference Citation Analysis]
30 Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Front Chem 2022;9:819165. [DOI: 10.3389/fchem.2021.819165] [Reference Citation Analysis]
31 Wang J, Li H. Editorial of Special Column on Antiviral Drug Discovery and Pharmacology. Acta Pharmaceutica Sinica B 2022;12:1540-1. [DOI: 10.1016/j.apsb.2022.03.005] [Reference Citation Analysis]
32 Sacco MD, Hu Y, Gongora MV, Meilleur F, Kemp MT, Zhang X, Wang J, Chen Y. The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small-molecule drug inhibition. Cell Res 2022. [PMID: 35292745 DOI: 10.1038/s41422-022-00640-y] [Reference Citation Analysis]
33 Kálai T, Pongrácz JE, Mátyus P. Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. Chemistry 2022;4:216-58. [DOI: 10.3390/chemistry4020019] [Reference Citation Analysis]
34 Woo J, Christian AH, Burgess SA, Jiang Y, Mansoor UF, Levin MD. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 2022;376:527-32. [PMID: 35482853 DOI: 10.1126/science.abo4282] [Reference Citation Analysis]
35 Ullrich S, Ekanayake KB, Otting G, Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett 2022;62:128629. [PMID: 35182772 DOI: 10.1016/j.bmcl.2022.128629] [Reference Citation Analysis]
36 White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ, Prasad VR. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021;12:e03347-21. [DOI: 10.1128/mbio.03347-21] [Reference Citation Analysis]
37 Calleja DJ, Lessene G, Komander D. Inhibitors of SARS-CoV-2 PLpro. Front Chem 2022;10:876212. [DOI: 10.3389/fchem.2022.876212] [Reference Citation Analysis]
38 Ramos-Guzmán CA, Velázquez-Libera JL, Ruiz-Pernía JJ, Tuñón I. Testing Affordable Strategies for the Computational Study of Reactivity in Cysteine Proteases: The Case of SARS-CoV-2 3CL Protease Inhibition. J Chem Theory Comput 2022. [PMID: 35549334 DOI: 10.1021/acs.jctc.2c00294] [Reference Citation Analysis]
39 Kim HK, Kim H, Lee MK, Choi WH, Jang Y, Shin JS, Park J, Bae DH, Hyun S, Kim KH, Han HW, Lim B, Choi G, Kim M, Chang Lim Y, Yoo J. Generation of human tonsil epithelial organoids as an ex vivo model for SARS-CoV-2 infection. Biomaterials 2022;283:121460. [DOI: 10.1016/j.biomaterials.2022.121460] [Reference Citation Analysis]
40 Shi Y, Zeida A, Edwards CE, Mallory ML, Sastre S, Machado MR, Pickles RJ, Fu L, Liu K, Yang J, Baric RS, Boucher RC, Radi R, Carroll KS. Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein. Proc Natl Acad Sci U S A 2022;119:e2120419119. [PMID: 35074895 DOI: 10.1073/pnas.2120419119] [Reference Citation Analysis]
41 Mykhailiuk PK. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. J Org Chem 2022. [PMID: 35175772 DOI: 10.1021/acs.joc.1c02956] [Reference Citation Analysis]
42 Catlin N, Bowman C, Campion S, Cheung J, Nowland W, Sathish J, Stethem C, Updyke L, Cappon G. Reproductive and developmental safety of nirmatrelvir (PF-07321332), an oral SARS-CoV-2 Mpro inhibitor in animal models. Reproductive Toxicology 2022. [DOI: 10.1016/j.reprotox.2022.01.006] [Reference Citation Analysis]
43 Pavan M, Bassani D, Sturlese M, Moro S. Bat coronaviruses related to SARS-CoV-2: what about their 3CL proteases (MPro)? J Enzyme Inhib Med Chem 2022;37:1077-82. [PMID: 35418253 DOI: 10.1080/14756366.2022.2062336] [Reference Citation Analysis]
44 Ye N, Yang Z, Liu Y. Applications of density functional theory in COVID-19 drug modeling. Drug Discov Today 2021:S1359-6446(21)00568-7. [PMID: 34954327 DOI: 10.1016/j.drudis.2021.12.017] [Reference Citation Analysis]
45 Choudhary S, Kanevsky I, Tomlinson L. Animal models for studying covid-19, prevention, and therapy: Pathology and disease phenotypes. Vet Pathol 2022;:3009858221092015. [PMID: 35451341 DOI: 10.1177/03009858221092015] [Reference Citation Analysis]
46 Ridgway H, Moore GJ, Mavromoustakos T, Tsiodras S, Ligielli I, Kelaidonis K, Chasapis CT, Kate Gadanec L, Zulli A, Apostolopoulos V, Petty R, Karakasiliotis I, Gorgoulis VG, Matsoukas JM. Discovery of a new generation of angiotensin receptor blocking drugs: receptor mechanisms and in silico binding to enzymes relevant to covid-19. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.04.010] [Reference Citation Analysis]
47 Neamati N. Advances Toward COVID-19 Therapies Special Issue. J Med Chem 2022. [PMID: 35138859 DOI: 10.1021/acs.jmedchem.2c00178] [Reference Citation Analysis]
48 Ni Y, Liao J, Qian Z, Wu C, Zhang X, Zhang J, Xie Y, Jiang S. Synthesis and evaluation of enantiomers of hydroxychloroquine against SARS-CoV-2 in vitro. Bioorg Med Chem 2022;53:116523. [PMID: 34875467 DOI: 10.1016/j.bmc.2021.116523] [Reference Citation Analysis]
49 Zhou J, Saha A, Huang Z, Warshel A. Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome. J Am Chem Soc 2022. [PMID: 35436404 DOI: 10.1021/jacs.2c00853] [Reference Citation Analysis]
50 Sendi P, Razonable RR, Nelson SB, Soriano A, Gandhi RT. First-generation Oral Antivirals Against SARS-CoV-2. Clinical Microbiology and Infection 2022. [DOI: 10.1016/j.cmi.2022.04.015] [Reference Citation Analysis]
51 Edwards AM, Baric RS, Saphire EO, Ulmer JB. Stopping pandemics before they start: Lessons learned from SARS-CoV-2. Science 2022;375:1133-9. [PMID: 35271333 DOI: 10.1126/science.abn1900] [Reference Citation Analysis]
52 Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Merino VF, Yan Y, Kim J, Davis SL, Komm O, Powell JD, D'Alessio FR, Yolken RH, Jain SK, Jones-Brando L. Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Commun Biol 2022;5:242. [PMID: 35304580 DOI: 10.1038/s42003-022-03189-z] [Reference Citation Analysis]
53 Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO, Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D, Krambrich J, Tas A, Lundgren B, Gravenfors Y, Craig AJ, Atilaw Y, Sandström A, Moodie LWK, Lundkvist Å, van Hemert MJ, Neyts J, Lennerstrand J, Kihlberg J, Sandberg K, Danielson UH, Carlsson J. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. J Am Chem Soc 2022. [PMID: 35142215 DOI: 10.1021/jacs.1c08402] [Reference Citation Analysis]
54 Li P, Wang Y, Lavrijsen M, Lamers MM, de Vries AC, Rottier RJ, Bruno MJ, Peppelenbosch MP, Haagmans BL, Pan Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. [DOI: 10.1038/s41422-022-00618-w] [Reference Citation Analysis]
55 Tarnawski AS, Ahluwalia A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J Gastroenterol 2022;28:275-89. [PMID: 35110950 DOI: 10.3748/wjg.v28.i3.275] [Reference Citation Analysis]
56 Barazorda-Ccahuana HL, Nedyalkova M, Mas F, Madurga S. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers (Basel) 2021;13:3823. [PMID: 34771379 DOI: 10.3390/polym13213823] [Reference Citation Analysis]
57 Lahtigui O, Forster D, Duchemin C, Cramer N. Enantioselective Access to 3-Azabicyclo[3.1.0]hexanes by Cp x Rh III Catalyzed C–H Activation and Cp*Ir III Transfer Hydrogenation. ACS Catal . [DOI: 10.1021/acscatal.2c01827] [Reference Citation Analysis]
58 Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.03.009] [Reference Citation Analysis]
59 Chen K, Krischuns T, Varga L, Harigua-souiai E, Paisant S, Zettor A, Chiaravalli J, Delpal A, Courtney D, O'brien A, Baker S, Decroly E, Isel C, Agou F, Jacob Y, Blondel A, Naffakh N. A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Antiviral Research 2022. [DOI: 10.1016/j.antiviral.2022.105272] [Reference Citation Analysis]
60 Liu H, Iketani S, Zask A, Khanizeman N, Bednarova E, Forouhar F, Fowler B, Hong SJ, Mohri H, Nair MS, Huang Y, Tay NES, Lee S, Karan C, Resnick SJ, Quinn C, Li W, Shion H, Xia X, Daniels JD, Bartolo-Cruz M, Farina M, Rajbhandari P, Jurtschenko C, Lauber MA, McDonald T, Stokes ME, Hurst BL, Rovis T, Chavez A, Ho DD, Stockwell BR. Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nat Commun 2022;13:1891. [PMID: 35393402 DOI: 10.1038/s41467-022-29413-2] [Reference Citation Analysis]
61 Qian HJ, Wang Y, Zhang MQ, Xie YC, Wu QQ, Liang LY, Cao Y, Duan HQ, Tian GH, Ma J, Zhang ZB, Li N, Jia JY, Zhang J, Aisa HA, Shen JS, Yu C, Jiang HL, Zhang WH, Wang Z, Liu GY. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin 2022. [PMID: 35296780 DOI: 10.1038/s41401-022-00895-6] [Reference Citation Analysis]
62 Wu Q, Yan S, Wang Y, Li M, Xiao Y, Li Y. Discovery of 4'-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor. Biochem Biophys Res Commun 2022;604:76-82. [PMID: 35303682 DOI: 10.1016/j.bbrc.2022.03.052] [Reference Citation Analysis]
63 Yu Y, Herrmann A, Thonn V, Cordsmeier A, Neurath MF, Ensser A, Becker C. SMYD2 Inhibition Downregulates TMPRSS2 and Decreases SARS-CoV-2 Infection in Human Intestinal and Airway Epithelial Cells. Cells 2022;11:1262. [DOI: 10.3390/cells11081262] [Reference Citation Analysis]
64 Shytaj IL, Fares M, Gallucci L, Lucic B, Tolba MM, Zimmermann L, Adler JM, Xing N, Bushe J, Gruber AD, Ambiel I, Taha Ayoub A, Cortese M, Neufeldt CJ, Stolp B, Sobhy MH, Fathy M, Zhao M, Laketa V, Diaz RS, Sutton RE, Chlanda P, Boulant S, Bartenschlager R, Stanifer ML, Fackler OT, Trimpert J, Savarino A, Lusic M. The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication In Vitro and Decreases Viral Titers and Disease Progression in Syrian Hamsters. mBio 2022;:e0370521. [PMID: 35229634 DOI: 10.1128/mbio.03705-21] [Reference Citation Analysis]
65 Yamamoto KZ, Yasuo N, Sekijima M. Screening for Inhibitors of Main Protease in SARS-CoV-2: In Silico and In Vitro Approach Avoiding Peptidyl Secondary Amides. J Chem Inf Model 2022. [PMID: 35015543 DOI: 10.1021/acs.jcim.1c01087] [Reference Citation Analysis]
66 Zhong B, Peng W, Du S, Chen B, Feng Y, Hu X, Lai Q, Liu S, Zhou Z, Fang P, Wu Y, Gao F, Zhou H, Sun L. Oridonin Inhibits SARS‐CoV‐2 by Targeting Its 3C‐Like Protease. Small Science. [DOI: 10.1002/smsc.202100124] [Reference Citation Analysis]
67 Reis S, Popp M, Kuehn R, Metzendorf M, Gagyor I, Kranke P, Meybohm P, Skoetz N, Weibel S; Cochrane Infectious Diseases Group. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database of Systematic Reviews 2022;2022. [DOI: 10.1002/14651858.cd015395] [Reference Citation Analysis]
68 Narayanan A, Toner SA, Jose J. Structure-based inhibitor design and repurposing clinical drugs to target SARS-CoV-2 proteases. Biochem Soc Trans 2022:BST20211180. [PMID: 35015073 DOI: 10.1042/BST20211180] [Reference Citation Analysis]
69 Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J Med Chem 2022. [PMID: 35352927 DOI: 10.1021/acs.jmedchem.2c00117] [Reference Citation Analysis]
70 Ma C, Wang J. Validation and Invalidation of SARS-CoV-2 Papain-like Protease Inhibitors. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.1c00240] [Reference Citation Analysis]
71 Johansen-leete J, Ullrich S, Fry SE, Frkic R, Bedding MJ, Aggarwal A, Ashhurst AS, Ekanayake KB, Mahawaththa MC, Sasi VM, Luedtke S, Ford DJ, O'donoghue AJ, Passioura T, Larance M, Otting G, Turville S, Jackson CJ, Nitsche C, Payne RJ. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chem Sci . [DOI: 10.1039/d1sc06750h] [Reference Citation Analysis]
72 Singh J. The Ascension of Targeted Covalent Inhibitors. J Med Chem 2022. [PMID: 35439421 DOI: 10.1021/acs.jmedchem.1c02134] [Reference Citation Analysis]
73 Rabi AS, Muniappan A. Commentary: Crossing the Rubicon—pre-emptive recipient bilateral pneumonectomy and delayed lung transplantation. JTCVS Techniques 2022. [DOI: 10.1016/j.xjtc.2022.02.004] [Reference Citation Analysis]
74 Ma C, Xia Z, Sacco MD, Hu Y, Townsend JA, Meng X, Choza J, Tan H, Jang J, Gongora MV, Zhang X, Zhang F, Xiang Y, Marty MT, Chen Y, Wang J. Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. J Am Chem Soc 2021;143:20697-709. [PMID: 34860011 DOI: 10.1021/jacs.1c08060] [Reference Citation Analysis]
75 Shivshankar P, Karmouty-Quintana H, Mills T, Doursout MF, Wang Y, Czopik AK, Evans SE, Eltzschig HK, Yuan X. SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation 2022. [PMID: 35320469 DOI: 10.1007/s10753-022-01656-7] [Reference Citation Analysis]
76 Zakharova MY, Kuznetsova AA, Uvarova VI, Fomina AD, Kozlovskaya LI, Kaliberda EN, Kurbatskaia IN, Smirnov IV, Bulygin AA, Knorre VD, Fedorova OS, Varnek A, Osolodkin DI, Ishmukhametov AA, Egorov AM, Gabibov AG, Kuznetsov NA. Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery. Front Pharmacol 2021;12:773198. [PMID: 34938188 DOI: 10.3389/fphar.2021.773198] [Reference Citation Analysis]
77 Hegde S, Tang Z, Zhao J, Wang J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. Front Chem 2021;9:802766. [PMID: 35004621 DOI: 10.3389/fchem.2021.802766] [Reference Citation Analysis]
78 Nikolaidis M, Papakyriakou A, Chlichlia K, Markoulatos P, Oliver SG, Amoutzias GD. Comparative Analysis of SARS-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike ORF. Viruses 2022;14:707. [DOI: 10.3390/v14040707] [Reference Citation Analysis]
79 Ng TI, Correia I, Seagal J, Degoey DA, Schrimpf MR, Hardee DJ, Noey EL, Kati WM. Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Viruses 2022;14:961. [DOI: 10.3390/v14050961] [Reference Citation Analysis]
80 Hung Y, Lee J, Chiu C, Lee C, Tsai P, Hsu I, Ko W. Oral Nirmatrelvir/Ritonavir Therapy for COVID-19: The Dawn in the Dark? Antibiotics 2022;11:220. [DOI: 10.3390/antibiotics11020220] [Reference Citation Analysis]
81 Tanase A, Manea A, Scurtu AD, Bratu LM, Chioran D, Dolghi A, Alexoi I, Aabed H, Lazureanu V, Dehelean CA. The “Invisible Enemy” SARS-CoV-2: Viral Spread and Drug Treatment. Medicina 2022;58:261. [DOI: 10.3390/medicina58020261] [Reference Citation Analysis]
82 De Santis GC, Oliveira LC, Garibaldi PMM, Almado CEL, Croda J, Arcanjo GGA, Oliveira ÉAF, Tonacio AC, Langhi DM Jr, Bordin JO, Gilio RN, Palma LC, Santos EV, Haddad SK, Prado BPA Jr, Pontelli MC, Gomes R, Miranda CH, Martins MA, Covas DT, Arruda E, Fonseca BAL, Calado RT. High-Dose Convalescent Plasma for Treatment of Severe COVID-19. Emerg Infect Dis 2022;28. [PMID: 35081022 DOI: 10.3201/eid2803.212299] [Reference Citation Analysis]
83 Xiong M, Nie T, Shao Q, Li M, Su H, Xu Y. In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114130] [Reference Citation Analysis]
84 Sathish JG, Bhatt S, Dasilva JK, Flynn D, Jenkinson S, Kalgutkar AS, Liu M, Manickam B, Pinkstaff J, Reagan WJ, Shirai N, Shoieb AM, Sirivelu M, Vispute S, Vitsky A, Walters K, Wisialowski TA, Updyke LW. Comprehensive Nonclinical Safety Assessment of Nirmatrelvir Supporting Timely Development of the SARS-COV-2 Antiviral Therapeutic, Paxlovid™. Int J Toxicol. [DOI: 10.1177/10915818221095489] [Reference Citation Analysis]
85 Zhao Y, Zhu Y, Liu X, Jin Z, Duan Y, Zhang Q, Wu C, Feng L, Du X, Zhao J, Shao M, Zhang B, Yang X, Wu L, Ji X, Guddat LW, Yang K, Rao Z, Yang H. Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proc Natl Acad Sci U S A 2022;119:e2117142119. [PMID: 35380892 DOI: 10.1073/pnas.2117142119] [Reference Citation Analysis]
86 Li J, Lin C, Zhou X, Zhong F, Zeng P, Yang Y, Zhang Y, Yu B, Fan X, McCormick PJ, Fu R, Fu Y, Jiang H, Zhang J. Structural Basis of the Main Proteases of Coronavirus Bound to Drug Candidate PF-07321332. J Virol 2022;:e0201321. [PMID: 35389231 DOI: 10.1128/jvi.02013-21] [Reference Citation Analysis]
87 Popowicz GM, Pyrc K, Hadian K. Vaccination versus SARS-CoV-2 Omicron: three vaccine doses win the battle. Signal Transduct Target Ther 2022;7:140. [PMID: 35477929 DOI: 10.1038/s41392-022-01000-3] [Reference Citation Analysis]
88 Nocentini A, Capasso C, Supuran CT. Perspectives on the design and discovery of α-ketoamide inhibitors for the treatment of novel coronavirus: where do we stand and where do we go? Expert Opinion on Drug Discovery. [DOI: 10.1080/17460441.2022.2052847] [Reference Citation Analysis]
89 Papp H, Lanszki Z, Keserű GM, Jakab F. Favipiravir for the treatment of COVID-19 in elderly patients-what do we know after 2 years of COVID-19? Geroscience 2022. [PMID: 35543795 DOI: 10.1007/s11357-022-00582-8] [Reference Citation Analysis]
90 Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? Annu Rep Med Chem 2021;57:49-107. [PMID: 34744210 DOI: 10.1016/bs.armc.2021.09.004] [Reference Citation Analysis]
91 Song Y, Masaki F. Preparation for the challenge of heavily mutated Omicron variant. Clin Transl Med 2021;11:e679. [PMID: 34898041 DOI: 10.1002/ctm2.679] [Reference Citation Analysis]
92 Phuong Vu L, Zyulina M, Hingst A, Schnakenburg G, Gütschow M. Combinatorial Assembly, Traceless Generation and In Situ Evaluation of Inhibitors for Therapeutically Relevant Serine Proteases. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.105676] [Reference Citation Analysis]
93 Fendler A, de Vries EGE, GeurtsvanKessel CH, Haanen JB, Wörmann B, Turajlic S, von Lilienfeld-Toal M. COVID-19 vaccines in patients with cancer: immunogenicity, efficacy and safety. Nat Rev Clin Oncol 2022. [PMID: 35277694 DOI: 10.1038/s41571-022-00610-8] [Reference Citation Analysis]