BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Okobi DE, Banerjee A, Matheson AMM, Phelps SM, Long MA. Motor cortical control of vocal interaction in neotropical singing mice. Science 2019;363:983-8. [DOI: 10.1126/science.aau9480] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Scherrer JR, Lynch GF, Zhang JJ, Fee MS. An optical design enabling lightweight and large field-of-view head-mounted microscopes. Nat Methods 2023. [PMID: 36928075 DOI: 10.1038/s41592-023-01806-1] [Reference Citation Analysis]
2 Cai J, Hadjinicolaou AE, Paulk AC, Williams ZM, Cash SS. Natural language processing models reveal neural dynamics of human conversation. bioRxiv 2023:2023. [PMID: 36945468 DOI: 10.1101/2023.03.10.531095] [Reference Citation Analysis]
3 Ham GX, Lim KE, Augustine GJ, Leong V. Synchrony in parent-offspring social interactions across development: A cross-species review of rodents and humans. J Neuroendocrinol 2023;:e13241. [PMID: 36929715 DOI: 10.1111/jne.13241] [Reference Citation Analysis]
4 Banerjee A, Chen F, Druckmann S, Long MA. Neural dynamics in the rodent motor cortex enables flexible control of vocal timing. bioRxiv 2023:2023. [PMID: 36747850 DOI: 10.1101/2023.01.23.525252] [Reference Citation Analysis]
5 Yang W, Kanodia H, Arber S. Structural and functional map for forelimb movement phases between cortex and medulla. Cell 2023;186:162-177.e18. [PMID: 36608651 DOI: 10.1016/j.cell.2022.12.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hood KE, Long E, Navarro E, Hurley LM. Playback of broadband vocalizations of female mice suppresses male ultrasonic calls. PLoS One 2023;18:e0273742. [PMID: 36603000 DOI: 10.1371/journal.pone.0273742] [Reference Citation Analysis]
7 Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 2022;110:3970-3985.e7. [PMID: 36174573 DOI: 10.1016/j.neuron.2022.09.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Abreu F, Pika S. Turn-taking skills in mammals: A systematic review into development and acquisition. Front Ecol Evol 2022;10. [DOI: 10.3389/fevo.2022.987253] [Reference Citation Analysis]
9 Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022;16:976789. [PMID: 36466364 DOI: 10.3389/fncir.2022.976789] [Reference Citation Analysis]
10 Coleman MJ, Day NF, Fortune ES. Neural mechanisms for turn-taking in duetting plain-tailed wrens. Front Neural Circuits 2022;16:970434. [PMID: 36213202 DOI: 10.3389/fncir.2022.970434] [Reference Citation Analysis]
11 Zhang D, Wang X, Cao N. Optimization of Vocal Singing Training Methods Based on Multimedia Data Analysis. Mathematical Problems in Engineering 2022;2022:1-10. [DOI: 10.1155/2022/7609516] [Reference Citation Analysis]
12 Heesen R, Fröhlich M, Sievers C, Woensdregt M, Dingemanse M. Coordinating social action: a primer for the cross-species investigation of communicative repair. Phil Trans R Soc B 2022;377:20210110. [DOI: 10.1098/rstb.2021.0110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Stoumpou V, Vargas CDM, Schade PF, Boyd JL, Giannakopoulos T, Jarvis ED. Analysis of Mouse Vocal Communication (AMVOC): a deep, unsupervised method for rapid detection, analysis and classification of ultrasonic vocalisations. Bioacoustics. [DOI: 10.1080/09524622.2022.2099973] [Reference Citation Analysis]
14 Smith SK, Frazel PW, Khodadadi-jamayran A, Zappile P, Marier C, Okhovat M, Brown S, Long MA, Heguy A, Phelps SM. De novo assembly and annotation of the singing mouse genome.. [DOI: 10.1101/2022.07.29.502048] [Reference Citation Analysis]
15 Ravignani A, Lumaca M, Kotz SA. Interhemispheric Brain Communication and the Evolution of Turn-Taking in Mammals. Front Ecol Evol 2022;10:916956. [DOI: 10.3389/fevo.2022.916956] [Reference Citation Analysis]
16 Vanderhoff EN, Bernal Hoverud N. Perspectives on Antiphonal Calling, Duetting and Counter-Singing in Non-primate Mammals: An Overview With Notes on the Coordinated Vocalizations of Bamboo Rats (Dactylomys spp., Rodentia: Echimyidae). Front Ecol Evol 2022;10:906546. [DOI: 10.3389/fevo.2022.906546] [Reference Citation Analysis]
17 Karmon G, Sragovich S, Hacohen-Kleiman G, Ben-Horin-Hazak I, Kasparek P, Schuster B, Sedlacek R, Pasmanik-Chor M, Theotokis P, Touloumi O, Zoidou S, Huang L, Wu PY, Shi R, Kapitansky O, Lobyntseva A, Giladi E, Shapira G, Shomron N, Bereswill S, Heimesaat MM, Grigoriadis N, McKinney RA, Rubinstein M, Gozes I. Novel ADNP Syndrome Mice Reveal Dramatic Sex-Specific Peripheral Gene Expression With Brain Synaptic and Tau Pathologies. Biol Psychiatry 2022;92:81-95. [PMID: 34865853 DOI: 10.1016/j.biopsych.2021.09.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
18 García-Rosales F, López-Jury L, González-Palomares E, Wetekam J, Cabral-Calderín Y, Kiai A, Kössl M, Hechavarría JC. Echolocation-related reversal of information flow in a cortical vocalization network. Nat Commun 2022;13:3642. [PMID: 35752629 DOI: 10.1038/s41467-022-31230-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Norton P, Benichov JI, Pexirra M, Schreiber S, Vallentin D. A feedforward inhibitory premotor circuit for auditory-vocal interactions in zebra finches. Proc Natl Acad Sci U S A 2022;119:e2118448119. [PMID: 35658073 DOI: 10.1073/pnas.2118448119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Gan-or B, London M. Cortical circuits modulate mouse social vocalizations.. [DOI: 10.1101/2022.05.20.492817] [Reference Citation Analysis]
21 Pouw W, Holler J. Timing in conversation is dynamically adjusted turn by turn in dyadic telephone conversations. Cognition 2022;222:105015. [DOI: 10.1016/j.cognition.2022.105015] [Reference Citation Analysis]
22 Zheng DJ, Okobi DE Jr, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus. J Comp Neurol 2022. [PMID: 35385140 DOI: 10.1002/cne.25321] [Reference Citation Analysis]
23 Banerjee A, Vallentin D. Convergent behavioral strategies and neural computations during vocal turn-taking across diverse species. Current Opinion in Neurobiology 2022;73:102529. [DOI: 10.1016/j.conb.2022.102529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Adret P. Developmental Plasticity in Primate Coordinated Song: Parallels and Divergences With Duetting Songbirds. Front Ecol Evol 2022;10:862196. [DOI: 10.3389/fevo.2022.862196] [Reference Citation Analysis]
25 Fernández-vargas M, Riede T, Pasch B. Mechanisms and constraints underlying acoustic variation in rodents. Animal Behaviour 2022;184:135-47. [DOI: 10.1016/j.anbehav.2021.07.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
26 Castellucci GA, Kovach CK, Howard MA 3rd, Greenlee JDW, Long MA. A speech planning network for interactive language use. Nature 2022;602:117-22. [PMID: 34987226 DOI: 10.1038/s41586-021-04270-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 15.0] [Reference Citation Analysis]
27 Palma M, Khoshnevis M, Lion M, Zenga C, Kefs S, Fallegger F, Schiavone G, Flandin IG, Lacour S, Yvert B. Chronic recording of cortical activity underlying vocalization in awake minipigs. J Neurosci Methods 2022;366:109427. [PMID: 34852254 DOI: 10.1016/j.jneumeth.2021.109427] [Reference Citation Analysis]
28 Sainburg T, Gentner TQ. Toward a Computational Neuroethology of Vocal Communication: From Bioacoustics to Neurophysiology, Emerging Tools and Future Directions. Front Behav Neurosci 2021;15:811737. [PMID: 34987365 DOI: 10.3389/fnbeh.2021.811737] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Håkansson J, Jiang W, Xue Q, Zheng X, Ding M, Agarwal AA, Elemans CPH. Aerodynamics and motor control of ultrasonic vocalizations for social communication in mice and rats. BMC Biol 2022;20:3. [PMID: 34996429 DOI: 10.1186/s12915-021-01185-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Takahashi DY, El Hady A, Zhang YS, Liao DA, Montaldo G, Urban A, Ghazanfar AA. Social-vocal brain networks in a non-human primate.. [DOI: 10.1101/2021.12.01.470701] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
31 Steinfath E, Palacios-Muñoz A, Rottschäfer JR, Yuezak D, Clemens J. Fast and accurate annotation of acoustic signals with deep neural networks. Elife 2021;10:e68837. [PMID: 34723794 DOI: 10.7554/eLife.68837] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
32 Carouso-Peck S, Goldstein MH, Fitch WT. The many functions of vocal learning. Philos Trans R Soc Lond B Biol Sci 2021;376:20200235. [PMID: 34482721 DOI: 10.1098/rstb.2020.0235] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Rose MC, Styr B, Schmid TA, Elie JE, Yartsev MM. Cortical representation of group social communication in bats. Science 2021;374:eaba9584. [PMID: 34672724 DOI: 10.1126/science.aba9584] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
34 Patel AD. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philos Trans R Soc Lond B Biol Sci 2021;376:20200326. [PMID: 34420384 DOI: 10.1098/rstb.2020.0326] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
35 de Reus K, Soma M, Anichini M, Gamba M, de Heer Kloots M, Lense M, Bruno JH, Trainor L, Ravignani A. Rhythm in dyadic interactions. Philos Trans R Soc Lond B Biol Sci 2021;376:20200337. [PMID: 34420383 DOI: 10.1098/rstb.2020.0337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
36 Norton P, Benichov J, Pexirra M, Schreiber S, Vallentin D. Feed-forward inhibition fine-tunes response timing in auditory-vocal interactions.. [DOI: 10.1101/2021.09.03.458890] [Reference Citation Analysis]
37 Scherrer JR, Lynch GF, Zhang JJ, Fee MS. A Novel Optical Design Enabling Lightweight and Large Field-of-View Head-Mounted Microscopes.. [DOI: 10.1101/2021.09.03.458947] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Stoumpou V, Vargas CDM, Schade PF, Giannakopoulos T, Jarvis ED. Analysis of Mouse Vocal Communication (AMVOC): A deep, unsupervised method for rapid detection, analysis, and classification of ultrasonic vocalizations.. [DOI: 10.1101/2021.08.13.456283] [Reference Citation Analysis]
39 Nourbakhsh-Rey M, Markham MR. Leptinergic Regulation of Vertebrate Communication Signals. Integr Comp Biol 2021:icab173. [PMID: 34329470 DOI: 10.1093/icb/icab173] [Reference Citation Analysis]
40 Zheng D, Okobi DE, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston’s singing mouse with pseudorabies virus.. [DOI: 10.1101/2021.07.16.452718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Rouse AA, Patel AD, Kao MH. Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021;118:e2026130118. [PMID: 34272278 DOI: 10.1073/pnas.2026130118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
42 Zheng DJ, Singh A, Phelps SM. Conservation and dimorphism in androgen receptor distribution in Alston's singing mouse (Scotinomys teguina). J Comp Neurol 2021;529:2539-57. [PMID: 33576501 DOI: 10.1002/cne.25108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Banerjee A, Egger R, Long MA. Using focal cooling to link neural dynamics and behavior. Neuron 2021;109:2508-18. [PMID: 34171292 DOI: 10.1016/j.neuron.2021.05.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
44 Coleman MJ, Day NF, Rivera-Parra P, Fortune ES. Neurophysiological coordination of duet singing. Proc Natl Acad Sci U S A 2021;118:e2018188118. [PMID: 34074755 DOI: 10.1073/pnas.2018188118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
45 Rychen J, Rodrigues DI, Tomka T, Rüttimann L, Yamahachi H, Hahnloser RHR. A system for controlling vocal communication networks. Sci Rep 2021;11:11099. [PMID: 34045536 DOI: 10.1038/s41598-021-90549-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
46 Steinfath E, Palacios A, Rottschäfer JR, Yuezak D, Clemens J. Fast and accurate annotation of acoustic signals with deep neural networks.. [DOI: 10.1101/2021.03.26.436927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 García-rosales F, López-jury L, Gonzalez-palomares E, Wetekam J, Cabral-calderín Y, Kiai A, Kössl M, Hechavarría JC. Echolocation reverses information flow in a cortical vocalization network.. [DOI: 10.1101/2021.03.15.435430] [Reference Citation Analysis]
48 Håkansson J, Jiang W, Xue Q, Zheng X, Ding M, Agarwal AA, Elemans CP. Aerodynamics and motor control of ultrasonic vocalizations for social communication in mice and rats.. [DOI: 10.1101/2021.03.08.434401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Jourjine N, Hoekstra HE. Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron 2021;109:1084-99. [PMID: 33609484 DOI: 10.1016/j.neuron.2021.02.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 18.5] [Reference Citation Analysis]
50 Ravignani A, de Boer B. Joint origins of speech and music: testing evolutionary hypotheses on modern humans. Semiotica 2021;2021:169-76. [DOI: 10.1515/sem-2019-0048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Marler CA, Monari PK. Neuroendocrine control of vocalizations in rodents. Neuroendocrine Regulation of Animal Vocalization 2021. [DOI: 10.1016/b978-0-12-815160-0.00014-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
52 Pfaff DW. Auditory add-ons during vertebrate evolution. Origins of Human Socialization 2021. [DOI: 10.1016/b978-0-323-85861-8.00013-x] [Reference Citation Analysis]
53 Perrino PA, Chamberlain SJ, Eigsti IM, Fitch RH. Communication-related assessments in an Angelman syndrome mouse model. Brain Behav 2021;11:e01937. [PMID: 33151040 DOI: 10.1002/brb3.1937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Hartmann K, Brecht M. A Functionally and Anatomically Bipartite Vocal Pattern Generator in the Rat Brain Stem. iScience 2020;23:101804. [PMID: 33299974 DOI: 10.1016/j.isci.2020.101804] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ibayashi K, Cardenas AR, Oya H, Kawasaki H, Kovach CK, Howard MA 3rd, Long MA, Greenlee JDW. Focal Cortical Surface Cooling is a Novel and Safe Method for Intraoperative Functional Brain Mapping. World Neurosurg 2021;147:e118-29. [PMID: 33307258 DOI: 10.1016/j.wneu.2020.11.164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Burkhard TT, Matz M, Phelps SM. Genomic heritability of song and condition in wild singing mice.. [DOI: 10.1101/2020.10.08.321141] [Reference Citation Analysis]
57 Matsuzaki M, Ebina T. Common marmoset as a model primate for study of the motor control system. Current Opinion in Neurobiology 2020;64:103-10. [DOI: 10.1016/j.conb.2020.02.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
58 Giglio EM, Phelps SM. Leptin regulates song effort in Neotropical singing mice (Scotinomys teguina). Animal Behaviour 2020;167:209-19. [DOI: 10.1016/j.anbehav.2020.06.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
59 Monteiro T, Rodrigues FS, Pexirra M, Cruz BF, Gonçalves AI, Rueda-orozco PE, Paton JJ. Using temperature to analyse the neural basis of a latent temporal decision.. [DOI: 10.1101/2020.08.24.251827] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
60 Huang L, Kebschull JM, Fürth D, Musall S, Kaufman MT, Churchland AK, Zador AM. BRICseq Bridges Brain-wide Interregional Connectivity to Neural Activity and Gene Expression in Single Animals. Cell 2020;182:177-188.e27. [PMID: 32619423 DOI: 10.1016/j.cell.2020.05.029] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
61 Riede T, Pasch B. Pygmy mouse songs reveal anatomical innovations underlying acoustic signal elaboration in rodents. J Exp Biol 2020;223:jeb223925. [PMID: 32457066 DOI: 10.1242/jeb.223925] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
62 Clayton KK, Williamson RS, Hancock KE, Hackett T, Polley DB. Auditory Corticothalamic Neurons are Recruited by Motor Preparatory Inputs.. [DOI: 10.1101/2020.05.28.121459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
63 Ibayashi K, Cardenas AR, Oya H, Kawasaki H, Kovach CK, Howard MA, Long MA, Greenlee JD. Focal cortical surface cooling is a novel and safe method for intraoperative functional brain mapping.. [DOI: 10.1101/2020.05.20.104364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
64 Banerjee A, Phelps SM, Long MA. Singing mice. Curr Biol 2019;29:R190-1. [PMID: 30889384 DOI: 10.1016/j.cub.2018.11.048] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
65 Martins PT, Boeckx C. Vocal learning: Beyond the continuum. PLoS Biol 2020;18:e3000672. [PMID: 32226012 DOI: 10.1371/journal.pbio.3000672] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
66 Mooney R. The neurobiology of innate and learned vocalizations in rodents and songbirds. Curr Opin Neurobiol 2020;64:24-31. [PMID: 32086177 DOI: 10.1016/j.conb.2020.01.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
67 Riede T, Schaefer C, Stein A. Role of deep breaths in ultrasonic vocal production of Sprague-Dawley rats. J Neurophysiol 2020;123:966-79. [PMID: 31967929 DOI: 10.1152/jn.00590.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
68 Zhang YS, Ghazanfar AA. A Hierarchy of Autonomous Systems for Vocal Production. Trends Neurosci 2020;43:115-26. [PMID: 31955902 DOI: 10.1016/j.tins.2019.12.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 8.7] [Reference Citation Analysis]
69 Benichov JI, Vallentin D. Inhibition within a premotor circuit controls the timing of vocal turn-taking in zebra finches. Nat Commun 2020;11:221. [PMID: 31924758 DOI: 10.1038/s41467-019-13938-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
70 Nieder A, Mooney R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos Trans R Soc Lond B Biol Sci 2020;375:20190054. [PMID: 31735150 DOI: 10.1098/rstb.2019.0054] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 12.3] [Reference Citation Analysis]
71 Wirthlin M, Chang EF, Knörnschild M, Krubitzer LA, Mello CV, Miller CT, Pfenning AR, Vernes SC, Tchernichovski O, Yartsev MM. A Modular Approach to Vocal Learning: Disentangling the Diversity of a Complex Behavioral Trait. Neuron 2019;104:87-99. [DOI: 10.1016/j.neuron.2019.09.036] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
72 Ravignani A, Verga L, Greenfield MD. Interactive rhythms across species: the evolutionary biology of animal chorusing and turn-taking. Ann N Y Acad Sci 2019;1453:12-21. [PMID: 31515817 DOI: 10.1111/nyas.14230] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
73 Lieberman P. The antiquity and evolution of the neural bases of rhythmic activity. Ann N Y Acad Sci 2019;1453:114-24. [PMID: 31368158 DOI: 10.1111/nyas.14199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Ravignani A, Dalla Bella S, Falk S, Kello CT, Noriega F, Kotz SA. Rhythm in speech and animal vocalizations: a cross-species perspective. Ann N Y Acad Sci 2019;1453:79-98. [PMID: 31237365 DOI: 10.1111/nyas.14166] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
75 Vahaba DM. Singing mice take turns talking. Journal of Experimental Biology 2019;222. [DOI: 10.1242/jeb.192765] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
76 Whalley K. Conversational control in singing mice. Nat Rev Neurosci 2019;20:252-252. [DOI: 10.1038/s41583-019-0158-9] [Reference Citation Analysis]
77 Hage SR. Precise vocal timing needs cortical control. Science 2019;363:926-7. [DOI: 10.1126/science.aaw5562] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
78 Albin RL. Tourette Syndrome as a Disorder of the Social Decision Making Network. Front Psychiatry 2019;10:742. [PMID: 31649568 DOI: 10.3389/fpsyt.2019.00742] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
79 [DOI: 10.1101/422477] [Cited by in Crossref: 1] [Reference Citation Analysis]