BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu Y, Nachtrab G, Keyes PC, Allen WE, Luo L, Chen X. Dynamic salience processing in paraventricular thalamus gates associative learning. Science 2018;362:423-9. [PMID: 30361366 DOI: 10.1126/science.aat0481] [Cited by in Crossref: 62] [Cited by in F6Publishing: 74] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Yang X, Su Y, Yang F, Song Y, Yan J, Luo Y, Zeng J. Neurofunctional mapping of reward anticipation and outcome for major depressive disorder: a voxel-based meta-analysis. Psychol Med 2022;:1-14. [PMID: 36047042 DOI: 10.1017/S0033291722002707] [Reference Citation Analysis]
2 Cheng J, Ma X, Li C, Ullah R, Wang X, Long J, Yuan Z, Liu S, Fu J, Chen Z, Shen Y, Zhou YD. Diet-induced inflammation in the anterior paraventricular thalamus induces compulsive sucrose-seeking. Nat Neurosci 2022;25:1009-13. [PMID: 35915173 DOI: 10.1038/s41593-022-01129-y] [Reference Citation Analysis]
3 Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022. [PMID: 35838792 DOI: 10.1007/s00429-022-02534-6] [Reference Citation Analysis]
4 Cruz KG, Leow YN, Le NM, Adam E, Huda R, Sur M. Cortical-Subcortical Interactions in Goal-directed Behavior. Physiol Rev 2022. [PMID: 35771984 DOI: 10.1152/physrev.00048.2021] [Reference Citation Analysis]
5 Xu YL, Zhu L, Chen ZJ, Deng XF, Liu PD, Li S, Lin BC, Yang CZ, Xu W, Zhou KK, Zhu YJ. Release of Endogenous Brain-derived Neurotrophic Factor into the Lateral Entorhinal Cortex from the Paraventricular Thalamus Ameliorates Social Memory Deficits in a Mouse Model of Alzheimer's Disease. Neurosci Bull 2022. [PMID: 35764752 DOI: 10.1007/s12264-022-00900-2] [Reference Citation Analysis]
6 Garau C, Liu X, Calo G, Schulz S, Reinscheid RK. Neuropeptide S Encodes Stimulus Salience in the Paraventricular Thalamus. Neuroscience 2022;496:83-95. [PMID: 35710064 DOI: 10.1016/j.neuroscience.2022.06.013] [Reference Citation Analysis]
7 Parker NF, Baidya A, Cox J, Haetzel LM, Zhukovskaya A, Murugan M, Engelhard B, Goldman MS, Witten IB. Choice-selective sequences dominate in cortical relative to thalamic inputs to NAc to support reinforcement learning. Cell Rep 2022;39:110756. [PMID: 35584665 DOI: 10.1016/j.celrep.2022.110756] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Cui N, Wu T, Wang Y, Zou H, Axmacher JC, Sang W, Guo L. Buddhist monasteries facilitated landscape conservation on the Qinghai-Tibetan Plateau. Landsc Ecol. [DOI: 10.1007/s10980-022-01443-7] [Reference Citation Analysis]
9 Chen G, Chen Z, Zhu Y. How the brain processes negative emotions. Elife 2022;11:e77550. [PMID: 35297762 DOI: 10.7554/eLife.77550] [Reference Citation Analysis]
10 Viena TD, Rasch GE, Allen TA. Dual medial prefrontal cortex and hippocampus projecting neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct 2022. [PMID: 35279742 DOI: 10.1007/s00429-022-02478-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Sun W, Tang P, Liang Y, Li J, Feng J, Zhang N, Lu D, He J, Chen X. The anterior cingulate cortex directly enhances auditory cortical responses in air-puffing-facilitated flight behavior. Cell Rep 2022;38:110506. [PMID: 35263590 DOI: 10.1016/j.celrep.2022.110506] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Shen L, Zhang G, Tao C, Seo MB, Zhang NK, Huang JJ, Zhang LI, Tao HW. A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-28854-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Pessoa L, Medina L, Desfilis E. Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philos Trans R Soc Lond B Biol Sci 2022;377:20200534. [PMID: 34957851 DOI: 10.1098/rstb.2020.0534] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
14 Roy DS, Zhang Y, Halassa MM, Feng G. Thalamic subnetworks as units of function. Nat Neurosci. [DOI: 10.1038/s41593-021-00996-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
15 Jacobson LH, Hoyer D, de Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J Intern Med 2022. [PMID: 35043499 DOI: 10.1111/joim.13406] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
16 Lucantonio F, Kim E, Su Z, Chang AJ, Bari BA, Cohen JY. Aversive stimuli bias corticothalamic responses to motivationally significant cues. Elife 2021;10:e57634. [PMID: 34738905 DOI: 10.7554/eLife.57634] [Reference Citation Analysis]
17 Giannotti G, Gong S, Fayette N, Heinsbroek JA, Orfila JE, Herson PS, Ford CP, Peters J. Extinction blunts paraventricular thalamic contributions to heroin relapse. Cell Rep 2021;36:109605. [PMID: 34433067 DOI: 10.1016/j.celrep.2021.109605] [Reference Citation Analysis]
18 Yan R, Wang T, Ma X, Zhang X, Zheng R, Zhou Q. Prefrontal inhibition drives formation and dynamic expression of probabilistic Pavlovian fear conditioning. Cell Rep 2021;36:109503. [PMID: 34380026 DOI: 10.1016/j.celrep.2021.109503] [Reference Citation Analysis]
19 De Groote A, de Kerchove d'Exaerde A. Thalamo-Nucleus Accumbens Projections in Motivated Behaviors and Addiction. Front Syst Neurosci 2021;15:711350. [PMID: 34335197 DOI: 10.3389/fnsys.2021.711350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021;15:706713. [PMID: 34220458 DOI: 10.3389/fnint.2021.706713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021;15:687257. [PMID: 34177472 DOI: 10.3389/fncir.2021.687257] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Newman EL, Covington HE 3rd, Leonard MZ, Burk K, Miczek KA. Hypoactive Thalamic Crh+ Cells in a Female Mouse Model of Alcohol Drinking After Social Trauma. Biol Psychiatry 2021:S0006-3223(21)01339-1. [PMID: 34281710 DOI: 10.1016/j.biopsych.2021.05.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Li S, Dong X, Kirouac GJ. Extensive divergence of projections to the forebrain from neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct 2021;226:1779-802. [PMID: 34032911 DOI: 10.1007/s00429-021-02289-6] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
24 Kooiker CL, Birnie MT, Baram TZ. The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci 2021;15:673162. [PMID: 34079442 DOI: 10.3389/fnbeh.2021.673162] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 Horie K, Inoue K, Nishimori K, Young LJ. Investigation of Oxtr-expressing Neurons Projecting to Nucleus Accumbens using Oxtr-ires-Cre Knock-in prairie Voles (Microtus ochrogaster). Neuroscience 2020;448:312-24. [PMID: 33092784 DOI: 10.1016/j.neuroscience.2020.08.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
26 Zhang J, He Y, Liang S, Liao X, Li T, Qiao Z, Chang C, Jia H, Chen X. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning. Nat Commun 2021;12:2730. [PMID: 33980868 DOI: 10.1038/s41467-021-23025-y] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
27 Kong MS, Zweifel LS. Central amygdala circuits in valence and salience processing. Behav Brain Res 2021;410:113355. [PMID: 33989728 DOI: 10.1016/j.bbr.2021.113355] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Kark SM, Birnie MT, Baram TZ, Yassa MA. Functional Connectivity of the Human Paraventricular Thalamic Nucleus: Insights From High Field Functional MRI. Front Integr Neurosci 2021;15:662293. [PMID: 33967711 DOI: 10.3389/fnint.2021.662293] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Mair RG, Francoeur MJ, Gibson BM. Central Thalamic-Medial Prefrontal Control of Adaptive Responding in the Rat: Many Players in the Chamber. Front Behav Neurosci 2021;15:642204. [PMID: 33897387 DOI: 10.3389/fnbeh.2021.642204] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
30 Penzo MA, Gao C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021;44:538-49. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
31 Horio N, Liberles SD. Hunger enhances food-odour attraction through a neuropeptide Y spotlight. Nature 2021;592:262-6. [PMID: 33658716 DOI: 10.1038/s41586-021-03299-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
32 Bengoetxea X, Goedecke L, Remmes J, Blaesse P, Grosch T, Lesting J, Pape HC, Jüngling K. Human-Specific Neuropeptide S Receptor Variants Regulate Fear Extinction in the Basal Amygdala of Male and Female Mice Depending on Threat Salience. Biol Psychiatry 2021;90:145-55. [PMID: 33902914 DOI: 10.1016/j.biopsych.2021.02.967] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
33 Rowson SA, Pleil KE. Influences of Stress and Sex on the Paraventricular Thalamus: Implications for Motivated Behavior. Front Behav Neurosci 2021;15:636203. [PMID: 33716683 DOI: 10.3389/fnbeh.2021.636203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Bravo-Rivera H, Rubio Arzola P, Caban-Murillo A, Vélez-Avilés AN, Ayala-Rosario SN, Quirk GJ. Characterizing Different Strategies for Resolving Approach-Avoidance Conflict. Front Neurosci 2021;15:608922. [PMID: 33716644 DOI: 10.3389/fnins.2021.608922] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021;15:627633. [PMID: 33732118 DOI: 10.3389/fnbeh.2021.627633] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
36 Maleki M, Anvari E, Hopke PK, Noorimotlagh Z, Mirzaee SA. An updated systematic review on the association between atmospheric particulate matter pollution and prevalence of SARS-CoV-2. Environ Res 2021;195:110898. [PMID: 33610583 DOI: 10.1016/j.envres.2021.110898] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
37 McNally GP. Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021;125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
38 Zhou K, Zhu L, Hou G, Chen X, Chen B, Yang C, Zhu Y. The Contribution of Thalamic Nuclei in Salience Processing. Front Behav Neurosci 2021;15:634618. [PMID: 33664657 DOI: 10.3389/fnbeh.2021.634618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
39 Lin R, Liang J, Luo M. The Raphe Dopamine System: Roles in Salience Encoding, Memory Expression, and Addiction. Trends Neurosci 2021;44:366-77. [PMID: 33568331 DOI: 10.1016/j.tins.2021.01.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zeng Q, Shan W, Zhang H, Yang J, Zuo Z. Paraventricular thalamic nucleus plays a critical role in consolation and anxious behaviors of familiar observers exposed to surgery mice. Theranostics 2021;11:3813-29. [PMID: 33664863 DOI: 10.7150/thno.45690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Martins D, Rademacher L, Gabay AS, Taylor R, Richey JA, Smith DV, Goerlich KS, Nawijn L, Cremers HR, Wilson R, Bhattacharyya S, Paloyelis Y. Mapping social reward and punishment processing in the human brain: A voxel-based meta-analysis of neuroimaging findings using the social incentive delay task. Neurosci Biobehav Rev 2021;122:1-17. [PMID: 33421544 DOI: 10.1016/j.neubiorev.2020.12.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
42 Khan FU, Aziz IB, Akhir EAP. Pluggable Micronetwork for Layer Configuration Relay in a Dynamic Deep Neural Surface. IEEE Access 2021;9:124831-46. [DOI: 10.1109/access.2021.3110709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Zhou W, Zheng H, Wang M, Zheng Y, Chen S, Wang MJ, Dong GH. The imbalance between goal-directed and habitual systems in internet gaming disorder: Results from the disturbed thalamocortical communications. J Psychiatr Res 2021;134:121-8. [PMID: 33383495 DOI: 10.1016/j.jpsychires.2020.12.058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
44 Sofia Beas B, Gu X, Leng Y, Koita O, Rodriguez-Gonzalez S, Kindel M, Matikainen-Ankney BA, Larsen RS, Kravitz AV, Hoon MA, Penzo MA. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun 2020;11:6218. [PMID: 33277492 DOI: 10.1038/s41467-020-19980-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
45 Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021;120:222-35. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
46 Tao Y, Cai CY, Xian JY, Kou XL, Lin YH, Qin C, Wu HY, Chang L, Luo CX, Zhu DY. Projections from Infralimbic Cortex to Paraventricular Thalamus Mediate Fear Extinction Retrieval. Neurosci Bull 2021;37:229-41. [PMID: 33180308 DOI: 10.1007/s12264-020-00603-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Dong X, Li S, Kirouac GJ. A projection from the paraventricular nucleus of the thalamus to the shell of the nucleus accumbens contributes to footshock stress-induced social avoidance. Neurobiol Stress 2020;13:100266. [PMID: 33344719 DOI: 10.1016/j.ynstr.2020.100266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
48 Barson JR, Mack NR, Gao WJ. The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci 2020;14:598469. [PMID: 33192373 DOI: 10.3389/fnbeh.2020.598469] [Cited by in Crossref: 12] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
49 McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020;14:590528. [PMID: 33177999 DOI: 10.3389/fnbeh.2020.590528] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
50 Haight JL, Campus P, Maria-Rios CE, Johnson AM, Klumpner MS, Kuhn BN, Covelo IR, Morrow JD, Flagel SB. The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Psychopharmacology (Berl) 2020;237:3741-58. [PMID: 32852601 DOI: 10.1007/s00213-020-05651-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
51 Bengoetxea X, Goedecke L, Blaesse P, Pape HC, Jüngling K. The µ-opioid system in midline thalamic nuclei modulates defence strategies towards a conditioned fear stimulus in male mice. J Psychopharmacol 2020;34:1280-8. [PMID: 32684084 DOI: 10.1177/0269881120940919] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
52 Keyes PC, Adams EL, Chen Z, Bi L, Nachtrab G, Wang VJ, Tessier-Lavigne M, Zhu Y, Chen X. Orchestrating Opiate-Associated Memories in Thalamic Circuits. Neuron 2020;107:1113-1123.e4. [PMID: 32679036 DOI: 10.1016/j.neuron.2020.06.028] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
53 Woods NI, Stefanini F, Apodaca-Montano DL, Tan IMC, Biane JS, Kheirbek MA. The Dentate Gyrus Classifies Cortical Representations of Learned Stimuli. Neuron 2020;107:173-184.e6. [PMID: 32359400 DOI: 10.1016/j.neuron.2020.04.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
54 Barsy B, Kocsis K, Magyar A, Babiczky Á, Szabó M, Veres JM, Hillier D, Ulbert I, Yizhar O, Mátyás F. Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nat Neurosci 2020;23:625-37. [PMID: 32284608 DOI: 10.1038/s41593-020-0620-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
55 Ma L, Chen W, Yu D, Han Y. Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei. Front Syst Neurosci 2020;14:15. [PMID: 32317941 DOI: 10.3389/fnsys.2020.00015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
56 Lin R, Liang J, Wang R, Yan T, Zhou Y, Liu Y, Feng Q, Sun F, Li Y, Li A, Gong H, Luo M. The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron 2020;106:498-514.e8. [PMID: 32145184 DOI: 10.1016/j.neuron.2020.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
57 Wang F, Zhang J, Yuan Y, Chen M, Gao Z, Zhan S, Fan C, Sun W, Hu J. Salience processing by glutamatergic neurons in the ventral pallidum. Science Bulletin 2020;65:389-401. [DOI: 10.1016/j.scib.2019.11.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
58 Lafferty CK, Yang AK, Mendoza JA, Britt JP. Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking. Cell Reports 2020;30:3729-3742.e3. [DOI: 10.1016/j.celrep.2020.02.095] [Cited by in Crossref: 18] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
59 Lin Q, Manley J, Helmreich M, Schlumm F, Li JM, Robson DN, Engert F, Schier A, Nöbauer T, Vaziri A. Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell 2020;180:536-551.e17. [PMID: 31955849 DOI: 10.1016/j.cell.2019.12.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
60 Lee K, Claar LD, Hachisuka A, Bakhurin KI, Nguyen J, Trott JM, Gill JL, Masmanidis SC. Temporally restricted dopaminergic control of reward-conditioned movements. Nat Neurosci 2020;23:209-16. [PMID: 31932769 DOI: 10.1038/s41593-019-0567-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
61 Kato TM, Fujimori-Tonou N, Mizukami H, Ozawa K, Fujisawa S, Kato T. Presynaptic dysregulation of the paraventricular thalamic nucleus causes depression-like behavior. Sci Rep 2019;9:16506. [PMID: 31712646 DOI: 10.1038/s41598-019-52984-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
62 Lee JH, Latchoumane CV, Park J, Kim J, Jeong J, Lee KH, Shin HS. The rostroventral part of the thalamic reticular nucleus modulates fear extinction. Nat Commun 2019;10:4637. [PMID: 31604913 DOI: 10.1038/s41467-019-12496-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
63 Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Current Biology 2019;29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
64 Pessoa L, Medina L, Hof PR, Desfilis E. Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. Neurosci Biobehav Rev 2019;107:296-312. [PMID: 31541638 DOI: 10.1016/j.neubiorev.2019.09.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
65 Campus P, Covelo IR, Kim Y, Parsegian A, Kuhn BN, Lopez SA, Neumaier JF, Ferguson SM, Solberg Woods LC, Sarter M, Flagel SB. The paraventricular thalamus is a critical mediator of top-down control of cue-motivated behavior in rats. Elife 2019;8:e49041. [PMID: 31502538 DOI: 10.7554/eLife.49041] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
66 Montardy Q, Zhou Z, Lei Z, Liu X, Zeng P, Chen C, Liu Y, Sanz-leon P, Huang K, Wang L. Characterization of glutamatergic VTA neural population responses to aversive and rewarding conditioning in freely-moving mice. Science Bulletin 2019;64:1167-78. [DOI: 10.1016/j.scib.2019.05.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
67 Otis JM, Zhu M, Namboodiri VMK, Cook CA, Kosyk O, Matan AM, Ying R, Hashikawa Y, Hashikawa K, Trujillo-Pisanty I, Guo J, Ung RL, Rodriguez-Romaguera J, Anton ES, Stuber GD. Paraventricular Thalamus Projection Neurons Integrate Cortical and Hypothalamic Signals for Cue-Reward Processing. Neuron 2019;103:423-431.e4. [PMID: 31196673 DOI: 10.1016/j.neuron.2019.05.018] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 15.7] [Reference Citation Analysis]
68 Ma C, Zhong P, Liu D, Barger ZK, Zhou L, Chang WC, Kim B, Dan Y. Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019;103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
69 Reinelt J, Uhlig M, Müller K, Lauckner ME, Kumral D, Schaare HL, Baczkowski BM, Babayan A, Erbey M, Roebbig J, Reiter A, Bae YJ, Kratzsch J, Thiery J, Hendler T, Villringer A, Gaebler M. Acute psychosocial stress alters thalamic network centrality. Neuroimage 2019;199:680-90. [PMID: 31173902 DOI: 10.1016/j.neuroimage.2019.06.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
70 Choi EA, Jean-Richard-Dit-Bressel P, Clifford CWG, McNally GP. Paraventricular Thalamus Controls Behavior during Motivational Conflict. J Neurosci 2019;39:4945-58. [PMID: 30979815 DOI: 10.1523/JNEUROSCI.2480-18.2019] [Cited by in Crossref: 36] [Cited by in F6Publishing: 45] [Article Influence: 12.0] [Reference Citation Analysis]
71 Zhou J, Wu B, Lin X, Dai Y, Li T, Zheng W, Guo W, Vakal S, Chen X, Chen JF. Accumbal Adenosine A2A Receptors Enhance Cognitive Flexibility by Facilitating Strategy Shifting. Front Cell Neurosci 2019;13:130. [PMID: 31031594 DOI: 10.3389/fncel.2019.00130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
72 Itoga CA, Chen Y, Fateri C, Echeverry PA, Lai JM, Delgado J, Badhon S, Short A, Baram TZ, Xu X. New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J Comp Neurol 2019;527:2474-87. [PMID: 30861133 DOI: 10.1002/cne.24676] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
73 Zhou K, Zhu Y. The paraventricular thalamic nucleus: A key hub of neural circuits underlying drug addiction. Pharmacol Res 2019;142:70-6. [PMID: 30772461 DOI: 10.1016/j.phrs.2019.02.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
74 Hua R, Wang X, Chen X, Wang X, Huang P, Li P, Mei W, Li H. Calretinin Neurons in the Midline Thalamus Modulate Starvation-Induced Arousal. Current Biology 2018;28:3948-3959.e4. [DOI: 10.1016/j.cub.2018.11.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]