BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, Abagyan R, Stevens RC, Handel TM. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 2015;347:1117-22. [PMID: 25612609 DOI: 10.1126/science.1261064] [Cited by in Crossref: 249] [Cited by in F6Publishing: 243] [Article Influence: 35.6] [Reference Citation Analysis]
Number Citing Articles
1 Kumar N, Acharya V. Machine intelligence-driven framework for optimized hit selection in virtual screening. J Cheminform 2022;14. [DOI: 10.1186/s13321-022-00630-7] [Reference Citation Analysis]
2 Lu M, Zhao W, Han S, Lin X, Xu T, Tan Q, Wang M, Yi C, Chu X, Yang W, Zhu Y, Wu B, Zhao Q. Activation of the human chemokine receptor CX3CR1 regulated by cholesterol. Sci Adv 2022;8:eabn8048. [PMID: 35767622 DOI: 10.1126/sciadv.abn8048] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sonawani A, Kharche S, Dasgupta D, Sengupta D. Insights into the dynamic interactions at chemokine-receptor interfaces and mechanistic models of chemokine binding. J Struct Biol 2022;214:107877. [PMID: 35750237 DOI: 10.1016/j.jsb.2022.107877] [Reference Citation Analysis]
4 Sonawani A, Kharche S, Dasgupta D, Sengupta D. Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022;206:812-22. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Harms M, Hansson RF, Carmali S, Almeida-Hernández Y, Sanchez-Garcia E, Münch J, Zelikin AN. Dimerization of the Peptide CXCR4-Antagonist on Macromolecular and Supramolecular Protraction Arms Affords Increased Potency and Enhanced Plasma Stability. Bioconjug Chem 2022. [PMID: 35293739 DOI: 10.1021/acs.bioconjchem.2c00034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Pawnikar S, Miao Y. Mechanism of Peptide Agonist Binding in CXCR4 Chemokine Receptor. Front Mol Biosci 2022;9:821055. [DOI: 10.3389/fmolb.2022.821055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022;15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yang H, Tan S, Qiao J, Xu Y, Gui Z, Meng Y, Dong B, Peng G, Ibhagui OY, Qian W, Lu J, Li Z, Wang G, Lai J, Yang L, Grossniklaus HE, Yang JJ. Non-invasive detection and complementary diagnostic of liver metastases via chemokine receptor 4 imaging. Cancer Gene Ther 2022. [PMID: 35145271 DOI: 10.1038/s41417-022-00433-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Pawnikar S, Bhattarai A, Wang J, Miao Y. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives. Adv Appl Bioinform Chem 2022;15:1-19. [PMID: 35023931 DOI: 10.2147/AABC.S247950] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Fang X, Meng Q, Zhang H, Fang X, Huang LS, Zhang X, Schooley RT, Ciechanover A, An J, Xu Y, Huang Z. A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114150] [Reference Citation Analysis]
12 Vu O, Bender BJ, Pankewitz L, Huster D, Beck-Sickinger AG, Meiler J. The Structural Basis of Peptide Binding at Class A G Protein-Coupled Receptors. Molecules 2021;27:210. [PMID: 35011444 DOI: 10.3390/molecules27010210] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Shao Z, Shen Q, Yao B, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Ma H, Chen ZH, Xu HE, Ying S, Zhang Y, Shen H. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol 2021. [PMID: 34949837 DOI: 10.1038/s41589-021-00918-z] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Moseri A, Akabayov SR, Cohen LS, Naider F, Anglister J. Multiple binding modes of an N-terminal CCR5-peptide in complex with HIV-1 gp120. FEBS J 2021. [PMID: 34921512 DOI: 10.1111/febs.16328] [Reference Citation Analysis]
15 von Hundelshausen P, Wichapong K, Gabius HJ, Mayo KH. The marriage of chemokines and galectins as functional heterodimers. Cell Mol Life Sci 2021;78:8073-95. [PMID: 34767039 DOI: 10.1007/s00018-021-04010-6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Tsuchiya Y, Taneishi K, Yonezawa Y. Autoencoder-based detection of the residues involved in G protein-coupled receptor signaling. Sci Rep 2021;11:19867. [PMID: 34615896 DOI: 10.1038/s41598-021-99019-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Sokkar P, Harms M, Stürzel C, Gilg A, Kizilsavas G, Raasholm M, Preising N, Wagner M, Kirchhoff F, Ständker L, Weidinger G, Mayer B, Münch J, Sanchez-Garcia E. Computational modeling and experimental validation of the EPI-X4/CXCR4 complex allows rational design of small peptide antagonists. Commun Biol 2021;4:1113. [PMID: 34552197 DOI: 10.1038/s42003-021-02638-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Hu J, Jiang Q, Shi T, Lin X, Zhao Y, Wang X, Liu X. In Situ Generated and Amplified Oxidative Stress with Metallo‐Nanodrug Assembly for Metastatic Cancer Therapy with High Specificity and Efficacy. Adv Therap 2021;4:2100148. [DOI: 10.1002/adtp.202100148] [Reference Citation Analysis]
19 Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Sci Signal 2021;14:eabc9012. [PMID: 34404752 DOI: 10.1126/scisignal.abc9012] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Haroon M, Abdulazeez I, Saleh TA, Al-saadi AA. Electrochemically modulated SERS detection of procaine using FTO electrodes modified with silver-decorated carbon nanosphere. Electrochimica Acta 2021;387:138463. [DOI: 10.1016/j.electacta.2021.138463] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
21 Zhang H, Chen K, Tan Q, Shao Q, Han S, Zhang C, Yi C, Chu X, Zhu Y, Xu Y, Zhao Q, Wu B. Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5. Nat Commun 2021;12:4151. [PMID: 34230484 DOI: 10.1038/s41467-021-24438-5] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
22 Tsutsumi N, Qu Q, Mavri M, Baggesen MS, Maeda S, Waghray D, Berg C, Kobilka BK, Rosenkilde MM, Skiniotis G, Garcia KC. Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1. Immunity 2021;54:1405-1416.e7. [PMID: 34216564 DOI: 10.1016/j.immuni.2021.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
23 Xiao T, Cai Y, Chen B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021;13:735. [PMID: 33922579 DOI: 10.3390/v13050735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
24 Fauser J, Itzen A, Gulen B. Current Advances in Covalent Stabilization of Macromolecular Complexes for Structural Biology. Bioconjug Chem 2021;32:879-90. [PMID: 33861574 DOI: 10.1021/acs.bioconjchem.1c00118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Liu K, Shen L, Wu M, Liu ZJ, Hua T. Structural insights into the activation of chemokine receptor CXCR2. FEBS J 2021. [PMID: 33835690 DOI: 10.1111/febs.15865] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Song JS, Chang CC, Wu CH, Dinh TK, Jan JJ, Huang KW, Chou MC, Shiue TY, Yeh KC, Ke YY, Yeh TK, Ta YN, Lee CJ, Huang JK, Sung YC, Shia KS, Chen Y. A highly selective and potent CXCR4 antagonist for hepatocellular carcinoma treatment. Proc Natl Acad Sci U S A 2021;118:e2015433118. [PMID: 33753481 DOI: 10.1073/pnas.2015433118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
27 Kline JM, Heusinkveld LE, Taranto E, Martin CB, Tomasi AG, Hsu IJ, Cho K, Khillan JS, Murphy PM, Pontejo SM. Structural and functional analysis of Ccr1l1, a Rodentia-restricted eosinophil-selective chemokine receptor homologue. J Biol Chem 2021;296:100373. [PMID: 33548230 DOI: 10.1016/j.jbc.2021.100373] [Reference Citation Analysis]
28 Slater O, Miller B, Kontoyianni M. Decoding Protein-protein Interactions: An Overview. Curr Top Med Chem 2020;20:855-82. [PMID: 32101126 DOI: 10.2174/1568026620666200226105312] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
29 Kaiser LM, Hunter ZR, Treon SP, Buske C. CXCR4 in Waldenström's Macroglobulinema: chances and challenges. Leukemia 2021;35:333-45. [PMID: 33273682 DOI: 10.1038/s41375-020-01102-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
30 Sepuru KM, Nair V, Prakash P, Gorfe AA, Rajarathnam K. Long-Range Coupled Motions Underlie Ligand Recognition by a Chemokine Receptor. iScience 2020;23:101858. [PMID: 33344917 DOI: 10.1016/j.isci.2020.101858] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
31 Kontos C, El Bounkari O, Krammer C, Sinitski D, Hille K, Zan C, Yan G, Wang S, Gao Y, Brandhofer M, Megens RTA, Hoffmann A, Pauli J, Asare Y, Gerra S, Bourilhon P, Leng L, Eckstein HH, Kempf WE, Pelisek J, Gokce O, Maegdefessel L, Bucala R, Dichgans M, Weber C, Kapurniotu A, Bernhagen J. Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting. Nat Commun 2020;11:5981. [PMID: 33239628 DOI: 10.1038/s41467-020-19764-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
32 Martin C, Gimenez LE, Williams SY, Jing Y, Wu Y, Hollanders C, Van der Poorten O, Gonzalez S, Van Holsbeeck K, Previti S, Lamouroux A, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Structure-Based Design of Melanocortin 4 Receptor Ligands Based on the SHU-9119-hMC4R Cocrystal Structure†. J Med Chem 2021;64:357-69. [PMID: 33190475 DOI: 10.1021/acs.jmedchem.0c01620] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
33 Che T. Advances in the Treatment of Chronic Pain by Targeting GPCRs. Biochemistry 2021;60:1401-12. [PMID: 33186495 DOI: 10.1021/acs.biochem.0c00644] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Matti C, D'Uonnolo G, Artinger M, Melgrati S, Salnikov A, Thelen S, Purvanov V, Strobel TD, Spannagel L, Thelen M, Legler DF. CCL20 is a novel ligand for the scavenging atypical chemokine receptor 4. J Leukoc Biol 2020;107:1137-54. [PMID: 32533638 DOI: 10.1002/JLB.2MA0420-295RRR] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
35 Işbilir A, Möller J, Arimont M, Bobkov V, Perpiñá-Viciano C, Hoffmann C, Inoue A, Heukers R, de Graaf C, Smit MJ, Annibale P, Lohse MJ. Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proc Natl Acad Sci U S A 2020;117:29144-54. [PMID: 33148803 DOI: 10.1073/pnas.2013319117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
36 Yan W, Cheng L, Wang W, Wu C, Yang X, Du X, Ma L, Qi S, Wei Y, Lu Z, Yang S, Shao Z. Structure of the human gonadotropin-releasing hormone receptor GnRH1R reveals an unusual ligand binding mode. Nat Commun 2020;11:5287. [PMID: 33082324 DOI: 10.1038/s41467-020-19109-w] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
37 Huang B, St Onge CM, Ma H, Zhang Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 2021;26:189-99. [PMID: 33075471 DOI: 10.1016/j.drudis.2020.10.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
38 Wedemeyer MJ, Mahn SA, Getschman AE, Crawford KS, Peterson FC, Marchese A, McCorvy JD, Volkman BF. The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. J Biol Chem 2020;295:13927-39. [PMID: 32788219 DOI: 10.1074/jbc.RA120.014244] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
39 Rosenberg EM Jr, Herrington J, Rajasekaran D, Murphy JW, Pantouris G, Lolis EJ. The N-terminal length and side-chain composition of CXCL13 affect crystallization, structure and functional activity. Acta Crystallogr D Struct Biol 2020;76:1033-49. [PMID: 33021505 DOI: 10.1107/S2059798320011687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol 2020;10:1672. [PMID: 33014834 DOI: 10.3389/fonc.2020.01672] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
41 Dijkman PM, Muñoz-García JC, Lavington SR, Kumagai PS, Dos Reis RI, Yin D, Stansfeld PJ, Costa-Filho AJ, Watts A. Conformational dynamics of a G protein-coupled receptor helix 8 in lipid membranes. Sci Adv 2020;6:eaav8207. [PMID: 32851152 DOI: 10.1126/sciadv.aav8207] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
42 Murphy JW, Rajasekaran D, Merkel J, Skeens E, Keeler C, Hodsdon ME, Lisi GP, Lolis E. High-Throughput Screening of a Functional Human CXCL12-CXCR4 Signaling Axis in a Genetically Modified S. cerevisiae: Discovery of a Novel Up-Regulator of CXCR4 Activity. Front Mol Biosci 2020;7:164. [PMID: 32766282 DOI: 10.3389/fmolb.2020.00164] [Reference Citation Analysis]
43 Aloyouny AY, Bepari A, Rahman I. Evaluating the Role of CXCR3 in Pain Modulation: A Literature Review. J Pain Res 2020;13:1987-2001. [PMID: 32821152 DOI: 10.2147/JPR.S254276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
44 Jiang B, Liu T, Gao Y. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacology & Therapeutics 2020;212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Cited by in Crossref: 21] [Cited by in F6Publishing: 40] [Article Influence: 10.5] [Reference Citation Analysis]
45 Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020;13:eaay5024. [PMID: 32665413 DOI: 10.1126/scisignal.aay5024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
46 Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, Liu ZJ. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 2020;585:135-40. [PMID: 32610344 DOI: 10.1038/s41586-020-2492-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 61] [Article Influence: 12.0] [Reference Citation Analysis]
47 Soave M, Heukers R, Kellam B, Woolard J, Smit MJ, Briddon SJ, Hill SJ. Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies. Cell Chem Biol 2020;27:1250-1261.e5. [PMID: 32610042 DOI: 10.1016/j.chembiol.2020.06.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
48 Wasilko DJ, Johnson ZL, Ammirati M, Che Y, Griffor MC, Han S, Wu H. Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20. Nat Commun 2020;11:3031. [PMID: 32541785 DOI: 10.1038/s41467-020-16820-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
49 Pawnikar S, Miao Y. Pathway and mechanism of drug binding to chemokine receptors revealed by accelerated molecular simulations. Future Med Chem 2020;12:1213-25. [PMID: 32515227 DOI: 10.4155/fmc-2020-0044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
50 Oum YH, Kell SA, Yoon Y, Liang Z, Burger P, Shim H. Discovery of novel aminopiperidinyl amide CXCR4 modulators through virtual screening and rational drug design. Eur J Med Chem 2020;201:112479. [PMID: 32534343 DOI: 10.1016/j.ejmech.2020.112479] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
51 Perpiñá-Viciano C, Işbilir A, Zarca A, Caspar B, Kilpatrick LE, Hill SJ, Smit MJ, Lohse MJ, Hoffmann C. Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Mol Pharmacol 2020;98:72-87. [PMID: 32474443 DOI: 10.1124/mol.119.118448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Samson GPB, Legler DF. Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Front Cell Dev Biol 2020;8:285. [PMID: 32411706 DOI: 10.3389/fcell.2020.00285] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Fang X, Meng Q, Zhang H, Liang B, Zhu S, Wang J, Zhang C, Huang LS, Zhang X, Schooley RT, An J, Xu Y, Huang Z. Design, synthesis, and biological characterization of a new class of symmetrical polyamine-based small molecule CXCR4 antagonists. Eur J Med Chem 2020;200:112410. [PMID: 32492596 DOI: 10.1016/j.ejmech.2020.112410] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
54 Jaeger K, Bruenle S, Weinert T, Guba W, Muehle J, Miyazaki T, Weber M, Furrer A, Haenggi N, Tetaz T, Huang CY, Mattle D, Vonach JM, Gast A, Kuglstatter A, Rudolph MG, Nogly P, Benz J, Dawson RJP, Standfuss J. Structural Basis for Allosteric Ligand Recognition in the Human CC Chemokine Receptor 7. Cell 2019;178:1222-1230.e10. [PMID: 31442409 DOI: 10.1016/j.cell.2019.07.028] [Cited by in Crossref: 32] [Cited by in F6Publishing: 43] [Article Influence: 16.0] [Reference Citation Analysis]
55 Jaracz-Ros A, Bernadat G, Cutolo P, Gallego C, Gustavsson M, Cecon E, Baleux F, Kufareva I, Handel TM, Bachelerie F, Levoye A. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. J Leukoc Biol 2020;107:1123-35. [PMID: 32374043 DOI: 10.1002/JLB.2MA0320-383RR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 2020;18:e3000656. [PMID: 32271748 DOI: 10.1371/journal.pbio.3000656] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
57 Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov. 2020;19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Cited by in Crossref: 42] [Cited by in F6Publishing: 76] [Article Influence: 21.0] [Reference Citation Analysis]
58 D'Agostino G, García-Cuesta EM, Gomariz RP, Rodríguez-Frade JM, Mellado M. The multilayered complexity of the chemokine receptor system. Biochem Biophys Res Commun 2020;528:347-58. [PMID: 32145914 DOI: 10.1016/j.bbrc.2020.02.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
59 Jiang G, Chen H, Huang J, Song Q, Chen Y, Gu X, Jiang Z, Huang Y, Lin Y, Feng J, Jiang J, Bao Y, Zheng G, Chen J, Chen H, Gao X. Tailored Lipoprotein-Like miRNA Delivery Nanostructure Suppresses Glioma Stemness and Drug Resistance through Receptor-Stimulated Macropinocytosis. Adv Sci (Weinh) 2020;7:1903290. [PMID: 32154087 DOI: 10.1002/advs.201903290] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
60 Tan S, Yang H, Xue S, Qiao J, Salarian M, Hekmatyar K, Meng Y, Mukkavilli R, Pu F, Odubade OY, Harris W, Hai Y, Yushak ML, Morales-Tirado VM, Mittal P, Sun PZ, Lawson D, Grossniklaus HE, Yang JJ. Chemokine receptor 4 targeted protein MRI contrast agent for early detection of liver metastases. Sci Adv 2020;6:eaav7504. [PMID: 32083172 DOI: 10.1126/sciadv.aav7504] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
61 Zachmann J, Kritsi E, Tapeinou A, Zoumpoulakis P, Tselios T, Matsoukas MT. Combined Computational and Structural Approach into Understanding the Role of Peptide Binding and Activation of Melanocortin Receptor 4. J Chem Inf Model 2020;60:1461-8. [PMID: 31944109 DOI: 10.1021/acs.jcim.9b01196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zhang C, Zhu R, Cao Q, Yang X, Huang Z, An J. Discoveries and developments of CXCR4-targeted HIV-1 entry inhibitors. Exp Biol Med (Maywood) 2020;245:477-85. [PMID: 32019336 DOI: 10.1177/1535370220901498] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
63 Gustavsson M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. J Leukoc Biol 2020;107:1115-22. [DOI: 10.1002/jlb.2mr1219-288r] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
64 Wedemeyer MJ, Mueller BK, Bender BJ, Meiler J, Volkman BF. Comparative modeling and docking of chemokine-receptor interactions with Rosetta. Biochem Biophys Res Commun 2020;528:389-97. [PMID: 31924303 DOI: 10.1016/j.bbrc.2019.12.076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. Journal of Biological Chemistry 2020;295:850-67. [DOI: 10.1016/s0021-9258(17)49940-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
66 Reinecke BA, Kang G, Zheng Y, Obeng S, Zhang H, Selley DE, An J, Zhang Y. Design and synthesis of a bivalent probe targeting the putative mu opioid receptor and chemokine receptor CXCR4 heterodimer. RSC Med Chem 2020;11:125-31. [PMID: 33479612 DOI: 10.1039/c9md00433e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
67 Larsen O, Lückmann M, van der Velden WJC, Oliva-Santiago M, Brvar M, Ulven T, Frimurer TM, Karlshøj S, Rosenkilde MM. Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacol Transl Sci 2019;2:429-41. [PMID: 32259075 DOI: 10.1021/acsptsci.9b00059] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
68 Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020;295:850-67. [PMID: 31811089 DOI: 10.1074/jbc.RA119.009716] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
69 Shen L, Yuan Y, Guo Y, Li M, Li C, Pu X. Probing the Druggablility on the Interface of the Protein-Protein Interaction and Its Allosteric Regulation Mechanism on the Drug Screening for the CXCR4 Homodimer. Front Pharmacol 2019;10:1310. [PMID: 31787895 DOI: 10.3389/fphar.2019.01310] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
70 Peng Y, Zhu L, Wang L, Liu Y, Fang K, Lan M, Shen D, Liu D, Yu Z, Guo Y. Preparation Of Nanobubbles Modified With A Small-Molecule CXCR4 Antagonist For Targeted Drug Delivery To Tumors And Enhanced Ultrasound Molecular Imaging. Int J Nanomedicine 2019;14:9139-57. [PMID: 32063704 DOI: 10.2147/IJN.S210478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
71 Guven-Maiorov E, Tsai CJ, Nussinov R. Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. Front Oncol 2019;9:1236. [PMID: 31803618 DOI: 10.3389/fonc.2019.01236] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
72 Bhusal RP, Foster SR, Stone MJ. Structural basis of chemokine and receptor interactions: Key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 2020;29:420-32. [PMID: 31605402 DOI: 10.1002/pro.3744] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
73 Muk S, Ghosh S, Achuthan S, Chen X, Yao X, Sandhu M, Griffor MC, Fennell KF, Che Y, Shanmugasundaram V, Qiu X, Tate CG, Vaidehi N. Machine Learning for Prioritization of Thermostabilizing Mutations for G-Protein Coupled Receptors. Biophys J 2019;117:2228-39. [PMID: 31703801 DOI: 10.1016/j.bpj.2019.10.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
74 Sushma, Mondal AC. Role of GPCR signaling and calcium dysregulation in Alzheimer's disease. Mol Cell Neurosci 2019;101:103414. [PMID: 31655116 DOI: 10.1016/j.mcn.2019.103414] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
75 Zhao S, Wu B, Stevens RC. Advancing Chemokine GPCR Structure Based Drug Discovery. Structure 2019;27:405-8. [PMID: 30840872 DOI: 10.1016/j.str.2019.02.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
76 Negro S, Zanetti G, Mattarei A, Valentini A, Megighian A, Tombesi G, Zugno A, Dianin V, Pirazzini M, Fillo S, Lista F, Rigoni M, Montecucco C. An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells 2019;8:E1183. [PMID: 31575088 DOI: 10.3390/cells8101183] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
77 Jørgensen AS, Larsen O, Uetz-von Allmen E, Lückmann M, Legler DF, Frimurer TM, Veldkamp CT, Hjortø GM, Rosenkilde MM. Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Front Immunol 2019;10:2156. [PMID: 31572374 DOI: 10.3389/fimmu.2019.02156] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
78 Erol I, Cosut B, Durdagi S. Toward Understanding the Impact of Dimerization Interfaces in Angiotensin II Type 1 Receptor. J Chem Inf Model 2019;59:4314-27. [PMID: 31429557 DOI: 10.1021/acs.jcim.9b00294] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
79 Gustavsson M, Dyer DP, Zhao C, Handel TM. Kinetics of CXCL12 binding to atypical chemokine receptor 3 reveal a role for the receptor N terminus in chemokine binding. Sci Signal 2019;12:eaaw3657. [PMID: 31506383 DOI: 10.1126/scisignal.aaw3657] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
80 Fox JC, Thomas MA, Dishman AF, Larsen O, Nakayama T, Yoshie O, Rosenkilde MM, Volkman BF. Structure-function guided modeling of chemokine-GPCR specificity for the chemokine XCL1 and its receptor XCR1. Sci Signal 2019;12:eaat4128. [PMID: 31481523 DOI: 10.1126/scisignal.aat4128] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
81 García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front Endocrinol (Lausanne) 2019;10:585. [PMID: 31507535 DOI: 10.3389/fendo.2019.00585] [Cited by in Crossref: 40] [Cited by in F6Publishing: 56] [Article Influence: 13.3] [Reference Citation Analysis]
82 Xue D, Xu T, Wang H, Wu M, Yuan Y, Wang W, Tan Q, Zhao F, Zhou F, Hu T, Jiang Z, Liu Z, Zhao S, Liu D, Wüthrich K, Tao H. Disulfide‐Containing Detergents (DCDs) for the Structural Biology of Membrane Proteins. Chem Eur J 2019;25:11635-40. [DOI: 10.1002/chem.201903190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
83 Zhu S, Meng Q, Schooley RT, An J, Xu Y, Huang Z. Structural and Biological Characterizations of Novel High-Affinity Fluorescent Probes with Overlapped and Distinctive Binding Regions on CXCR4. Molecules 2019;24:E2928. [PMID: 31412600 DOI: 10.3390/molecules24162928] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
84 Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019;39:532-56. [PMID: 31313072 DOI: 10.1007/s10875-019-00665-w] [Cited by in Crossref: 21] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
85 Tikhonova IG, Gigoux V, Fourmy D. Understanding Peptide Binding in Class A G Protein-Coupled Receptors. Mol Pharmacol 2019;96:550-61. [PMID: 31436539 DOI: 10.1124/mol.119.115915] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
86 Arimont M, Hoffmann C, de Graaf C, Leurs R. Chemokine Receptor Crystal Structures: What Can Be Learned from Them? Mol Pharmacol 2019;96:765-77. [PMID: 31266800 DOI: 10.1124/mol.119.117168] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
87 Chen B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol 2019;27:878-91. [PMID: 31262533 DOI: 10.1016/j.tim.2019.06.002] [Cited by in Crossref: 71] [Cited by in F6Publishing: 80] [Article Influence: 23.7] [Reference Citation Analysis]
88 Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019;294:12370-9. [PMID: 31235521 DOI: 10.1074/jbc.RA119.008902] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
89 Fassi EMA, Sgrignani J, D'Agostino G, Cecchinato V, Garofalo M, Grazioso G, Uguccioni M, Cavalli A. Oxidation State Dependent Conformational Changes of HMGB1 Regulate the Formation of the CXCL12/HMGB1 Heterocomplex. Comput Struct Biotechnol J 2019;17:886-94. [PMID: 31333815 DOI: 10.1016/j.csbj.2019.06.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
90 Ming Q, Gonzalez-Perez D, Luca VC. Molecular engineering strategies for visualizing low-affinity protein complexes. Exp Biol Med (Maywood) 2019;244:1559-67. [PMID: 31184923 DOI: 10.1177/1535370219855401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
91 Graham GJ, Handel TM, Proudfoot AE. Leukocyte Adhesion: Reconceptualizing Chemokine Presentation by Glycosaminoglycans. Trends in Immunology 2019;40:472-81. [DOI: 10.1016/j.it.2019.03.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 51] [Article Influence: 11.7] [Reference Citation Analysis]
92 Jakobs BD, Spannagel L, Purvanov V, Uetz-von Allmen E, Matti C, Legler DF. Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7. Int J Mol Sci 2019;20:E2597. [PMID: 31137829 DOI: 10.3390/ijms20102597] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
93 Wink LH, Baker DL, Cole JA, Parrill AL. A benchmark study of loop modeling methods applied to G protein-coupled receptors. J Comput Aided Mol Des 2019;33:573-95. [PMID: 31123958 DOI: 10.1007/s10822-019-00196-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
94 Heuninck J, Perpiñá Viciano C, Işbilir A, Caspar B, Capoferri D, Briddon SJ, Durroux T, Hill SJ, Lohse MJ, Milligan G, Pin JP, Hoffmann C. Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Mol Pharmacol 2019;96:778-93. [PMID: 31092552 DOI: 10.1124/mol.118.115477] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
95 Sanchez J, Lane JR, Canals M, Stone MJ. Influence of Chemokine N-Terminal Modification on Biased Agonism at the Chemokine Receptor CCR1. Int J Mol Sci 2019;20:E2417. [PMID: 31096719 DOI: 10.3390/ijms20102417] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
96 De Clercq E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 2019;27:2040206619829382. [PMID: 30776910 DOI: 10.1177/2040206619829382] [Cited by in Crossref: 49] [Cited by in F6Publishing: 61] [Article Influence: 16.3] [Reference Citation Analysis]
97 Taylor BC, Lee CT, Amaro RE. Structural basis for ligand modulation of the CCR2 conformational landscape. Proc Natl Acad Sci U S A 2019;116:8131-6. [PMID: 30975755 DOI: 10.1073/pnas.1814131116] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
98 Zhang C, Huang LS, Zhu R, Meng Q, Zhu S, Xu Y, Zhang H, Fang X, Zhang X, Zhou J, Schooley RT, Yang X, Huang Z, An J. High affinity CXCR4 inhibitors generated by linking low affinity peptides. Eur J Med Chem 2019;172:174-85. [PMID: 30978562 DOI: 10.1016/j.ejmech.2019.03.056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
99 Wang Y, Park JH, Lupala CS, Yun JH, Jin Z, Huang L, Li X, Tang L, Lee W, Liu H. Computer aided protein engineering to enhance the thermo-stability of CXCR1- T4 lysozyme complex. Sci Rep 2019;9:5317. [PMID: 30926935 DOI: 10.1038/s41598-019-41838-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
100 Oakes V, Domene C. Influence of Cholesterol and Its Stereoisomers on Members of the Serotonin Receptor Family. J Mol Biol 2019;431:1633-49. [PMID: 30857969 DOI: 10.1016/j.jmb.2019.02.030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
101 Rosenberg EM Jr, Harrison RES, Tsou LK, Drucker N, Humphries B, Rajasekaran D, Luker KE, Wu CH, Song JS, Wang CJ, Murphy JW, Cheng YC, Shia KS, Luker GD, Morikis D, Lolis EJ. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chem Biol 2019;26:662-673.e7. [PMID: 30827936 DOI: 10.1016/j.chembiol.2019.01.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
102 Bender BJ, Vortmeier G, Ernicke S, Bosse M, Kaiser A, Els-Heindl S, Krug U, Beck-Sickinger A, Meiler J, Huster D. Structural Model of Ghrelin Bound to its G Protein-Coupled Receptor. Structure 2019;27:537-544.e4. [PMID: 30686667 DOI: 10.1016/j.str.2018.12.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
103 Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019;6:3. [PMID: 30729111 DOI: 10.3389/fmed.2019.00003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
104 Sanchez J, E Huma Z, Lane JR, Liu X, Bridgford JL, Payne RJ, Canals M, Stone MJ. Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. J Biol Chem 2019;294:3464-75. [PMID: 30567735 DOI: 10.1074/jbc.RA118.006535] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
105 Shaik MM, Peng H, Lu J, Rits-Volloch S, Xu C, Liao M, Chen B. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 2019;565:318-23. [PMID: 30542158 DOI: 10.1038/s41586-018-0804-9] [Cited by in Crossref: 80] [Cited by in F6Publishing: 93] [Article Influence: 20.0] [Reference Citation Analysis]
106 Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019;54:69-80. [PMID: 30465827 DOI: 10.1016/j.cellsig.2018.11.004] [Cited by in Crossref: 56] [Cited by in F6Publishing: 77] [Article Influence: 14.0] [Reference Citation Analysis]
107 Adlere I, Sun S, Zarca A, Roumen L, Gozelle M, Viciano CP, Caspar B, Arimont M, Bebelman JP, Briddon SJ, Hoffmann C, Hill SJ, Smit MJ, Vischer HF, Wijtmans M, de Graaf C, de Esch IJP, Leurs R. Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. Eur J Med Chem 2019;162:631-49. [PMID: 30476826 DOI: 10.1016/j.ejmech.2018.10.060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
108 Cong X, Golebiowski J. Allosteric Na+-binding site modulates CXCR4 activation. Phys Chem Chem Phys 2018;20:24915-20. [PMID: 30238101 DOI: 10.1039/c8cp04134b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
109 Castleman PN, Sears CK, Cole JA, Baker DL, Parrill AL. GPCR homology model template selection benchmarking: Global versus local similarity measures. J Mol Graph Model 2019;86:235-46. [PMID: 30390544 DOI: 10.1016/j.jmgm.2018.10.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
110 Van Hout A, Klarenbeek A, Bobkov V, Doijen J, Arimont M, Zhao C, Heukers R, Rimkunas R, de Graaf C, Verrips T, van der Woning B, de Haard H, Rucker JB, Vermeire K, Handel T, Van Loy T, Smit MJ, Schols D. CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry. Biochem Pharmacol 2018;158:402-12. [PMID: 30342024 DOI: 10.1016/j.bcp.2018.10.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
111 Hitchinson B, Eby JM, Gao X, Guite-Vinet F, Ziarek JJ, Abdelkarim H, Lee Y, Okamoto Y, Shikano S, Majetschak M, Heveker N, Volkman BF, Tarasova NI, Gaponenko V. Biased antagonism of CXCR4 avoids antagonist tolerance. Sci Signal 2018;11:eaat2214. [PMID: 30327409 DOI: 10.1126/scisignal.aat2214] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
112 Thelen M, Legler DF. Membrane lipid environment: Potential modulation of chemokine receptor function. Cytokine 2018;109:72-5. [DOI: 10.1016/j.cyto.2018.02.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
113 Iliopoulou M, Nolan R, Alvarez L, Watanabe Y, Coomer CA, Jakobsdottir GM, Bowden TA, Padilla-Parra S. A dynamic three-step mechanism drives the HIV-1 pre-fusion reaction. Nat Struct Mol Biol 2018;25:814-22. [PMID: 30150645 DOI: 10.1038/s41594-018-0113-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
114 Riutta SJ, Larsen O, Getschman AE, Rosenkilde MM, Hwang ST, Volkman BF. Mutational analysis of CCL20 reveals flexibility of N-terminal amino acid composition and length. J Leukoc Biol 2018;104:423-34. [DOI: 10.1002/jlb.1vma0218-049r] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
115 Mao Y, Meng Q, Song P, Zhu S, Xu Y, Snyder EY, An J, Huang Z. Novel Bivalent and D-Peptide Ligands of CXCR4 Mobilize Hematopoietic Progenitor Cells to the Blood in C3H/HeJ Mice. Cell Transplant 2018;27:1249-55. [PMID: 29991278 DOI: 10.1177/0963689718784957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
116 Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochemical Pharmacology 2018;153:299-309. [DOI: 10.1016/j.bcp.2018.03.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
117 Stenkamp RE. Identifying G protein-coupled receptor dimers from crystal packings. Acta Crystallogr D Struct Biol 2018;74:655-70. [PMID: 29968675 DOI: 10.1107/S2059798318008136] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
118 Miyanabe K, Yamashita T, Abe Y, Akiba H, Takamatsu Y, Nakakido M, Hamakubo T, Ueda T, Caaveiro JMM, Tsumoto K. Tyrosine Sulfation Restricts the Conformational Ensemble of a Flexible Peptide, Strengthening the Binding Affinity for an Antibody. Biochemistry 2018;57:4177-85. [DOI: 10.1021/acs.biochem.8b00592] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
119 Wang C, Chen W, Shen J. CXCR7 Targeting and Its Major Disease Relevance. Front Pharmacol 2018;9:641. [PMID: 29977203 DOI: 10.3389/fphar.2018.00641] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
120 Taddese B, Deniaud M, Garnier A, Tiss A, Guissouma H, Abdi H, Henrion D, Chabbert M. Evolution of chemokine receptors is driven by mutations in the sodium binding site. PLoS Comput Biol 2018;14:e1006209. [PMID: 29912865 DOI: 10.1371/journal.pcbi.1006209] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
121 Thomas MA, Kleist AB, Volkman BF. Decoding the chemotactic signal. J Leukoc Biol 2018;104:359-74. [PMID: 29873835 DOI: 10.1002/JLB.1MR0218-044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
122 Liu H, Kim HR, Deepak RNVK, Wang L, Chung KY, Fan H, Wei Z, Zhang C. Orthosteric and allosteric action of the C5a receptor antagonists. Nat Struct Mol Biol 2018;25:472-81. [PMID: 29867214 DOI: 10.1038/s41594-018-0067-z] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 13.8] [Reference Citation Analysis]
123 Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. [PMID: 29637711 DOI: 10.1111/febs.14466] [Cited by in Crossref: 228] [Cited by in F6Publishing: 345] [Article Influence: 57.0] [Reference Citation Analysis]
124 Berg C, Daugvilaite V, Steen A, Jørgensen AS, Våbenø J, Rosenkilde MM. Inhibition of HIV Fusion by Small Molecule Agonists through Efficacy-Engineering of CXCR4. ACS Chem Biol 2018;13:881-6. [PMID: 29461034 DOI: 10.1021/acschembio.8b00061] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
125 Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. J Immunol 2018;200:3825-39. [PMID: 29678950 DOI: 10.4049/jimmunol.1800343] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
126 Abayev M, Rodrigues JPGLM, Srivastava G, Arshava B, Jaremko Ł, Jaremko M, Naider F, Levitt M, Anglister J. The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS J 2018;285:1988-2003. [PMID: 29619777 DOI: 10.1111/febs.14460] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
127 Lacy M, Kontos C, Brandhofer M, Hille K, Gröning S, Sinitski D, Bourilhon P, Rosenberg E, Krammer C, Thavayogarajah T, Pantouris G, Bakou M, Weber C, Lolis E, Bernhagen J, Kapurniotu A. Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep 2018;8:5171. [PMID: 29581527 DOI: 10.1038/s41598-018-23554-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
128 Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018;175:1419-38. [PMID: 29272550 DOI: 10.1111/bph.14132] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
129 Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J, Counson M, Beaupain N, Seguin-Devaux C, Deroo S, Baudy-Floc'h M, Chevigné A. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J Leukoc Biol 2018;104:343-57. [PMID: 29570832 DOI: 10.1002/JLB.3MA0118-007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
130 Gahbauer S, Pluhackova K, Böckmann RA. Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol. PLoS Comput Biol 2018;14:e1006062. [PMID: 29529028 DOI: 10.1371/journal.pcbi.1006062] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
131 Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine 2018;109:2-10. [PMID: 29398278 DOI: 10.1016/j.cyto.2017.12.022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
132 Sahoo AR, Mishra R, Rana S. The Model Structures of the Complement Component 5a Receptor (C5aR) Bound to the Native and Engineered hC5a. Sci Rep 2018;8:2955. [PMID: 29440703 DOI: 10.1038/s41598-018-21290-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
133 Wu CH, Song JS, Kuan HH, Wu SH, Chou MC, Jan JJ, Tsou LK, Ke YY, Chen CT, Yeh KC, Wang SY, Yeh TK, Tseng CT, Huang CL, Wu MH, Kuo PC, Lee CJ, Shia KS. Development of Stem-Cell-Mobilizing Agents Targeting CXCR4 Receptor for Peripheral Blood Stem Cell Transplantation and Beyond. J Med Chem 2018;61:818-33. [PMID: 29314840 DOI: 10.1021/acs.jmedchem.7b01322] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
134 Brox R, Milanos L, Saleh N, Baumeister P, Buschauer A, Hofmann D, Heinrich MR, Clark T, Tschammer N. Molecular Mechanisms of Biased and Probe-Dependent Signaling at CXC-Motif Chemokine Receptor CXCR3 Induced by Negative Allosteric Modulators. Mol Pharmacol 2018;93:309-22. [PMID: 29343553 DOI: 10.1124/mol.117.110296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
135 Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Biophys J 2017;113:2695-705. [PMID: 29262362 DOI: 10.1016/j.bpj.2017.09.041] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
136 von Hundelshausen P, Agten SM, Eckardt V, Blanchet X, Schmitt MM, Ippel H, Neideck C, Bidzhekov K, Leberzammer J, Wichapong K, Faussner A, Drechsler M, Grommes J, van Geffen JP, Li H, Ortega-Gomez A, Megens RT, Naumann R, Dijkgraaf I, Nicolaes GA, Döring Y, Soehnlein O, Lutgens E, Heemskerk JW, Koenen RR, Mayo KH, Hackeng TM, Weber C. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci Transl Med 2017;9:eaah6650. [PMID: 28381538 DOI: 10.1126/scitranslmed.aah6650] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 12.6] [Reference Citation Analysis]
137 Shin K, Kenward C, Rainey JK. Apelinergic System Structure and Function. Compr Physiol 2017;8:407-50. [PMID: 29357134 DOI: 10.1002/cphy.c170028] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
138 Teplyakov A, Obmolova G, Gilliland GL. Structural insights into chemokine CCL17 recognition by antibody M116. Biochem Biophys Rep 2018;13:27-31. [PMID: 29264403 DOI: 10.1016/j.bbrep.2017.11.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
139 Boyé K, Pujol N, D Alves I, Chen YP, Daubon T, Lee YZ, Dedieu S, Constantin M, Bello L, Rossi M, Bjerkvig R, Sue SC, Bikfalvi A, Billottet C. The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nat Commun 2017;8:1571. [PMID: 29146996 DOI: 10.1038/s41467-017-01686-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
140 Chen YP, Wu HL, Boyé K, Pan CY, Chen YC, Pujol N, Lin CW, Chiu LY, Billottet C, Alves ID, Bikfalvi A, Sue SC. Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation. ACS Chem Biol 2017;12:2767-78. [PMID: 28945356 DOI: 10.1021/acschembio.7b00704] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
141 Berkamp S, Park SH, De Angelis AA, Marassi FM, Opella SJ. Structure of monomeric Interleukin-8 and its interactions with the N-terminal Binding Site-I of CXCR1 by solution NMR spectroscopy. J Biomol NMR 2017;69:111-21. [PMID: 29143165 DOI: 10.1007/s10858-017-0128-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
142 Cigler M, Müller TG, Horn-Ghetko D, von Wrisberg MK, Fottner M, Goody RS, Itzen A, Müller MP, Lang K. Proximity-Triggered Covalent Stabilization of Low-Affinity Protein Complexes In Vitro and In Vivo. Angew Chem Int Ed Engl 2017;56:15737-41. [PMID: 28960788 DOI: 10.1002/anie.201706927] [Cited by in Crossref: 32] [Cited by in F6Publishing: 39] [Article Influence: 6.4] [Reference Citation Analysis]
143 Cigler M, Müller TG, Horn-ghetko D, von Wrisberg M, Fottner M, Goody RS, Itzen A, Müller MP, Lang K. Proximitäts-vermittelte kovalente Stabilisierung niedrig-affiner Proteinkomplexe in vitro und in vivo. Angew Chem 2017;129:15943-7. [DOI: 10.1002/ange.201706927] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
144 Flanagan CA, Manilall A. Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding. Front Endocrinol (Lausanne) 2017;8:274. [PMID: 29123501 DOI: 10.3389/fendo.2017.00274] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
145 Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017;18:E2088. [PMID: 28974038 DOI: 10.3390/ijms18102088] [Cited by in Crossref: 68] [Cited by in F6Publishing: 88] [Article Influence: 13.6] [Reference Citation Analysis]
146 Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, Kufareva I, Handel TM. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. Immunity 2017;46:1005-1017.e5. [PMID: 28636951 DOI: 10.1016/j.immuni.2017.05.002] [Cited by in Crossref: 95] [Cited by in F6Publishing: 99] [Article Influence: 19.0] [Reference Citation Analysis]
147 Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017;102:1199-217. [PMID: 28848041 DOI: 10.1189/jlb.4RU0417-145RR] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
148 Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Annu Rev Biophys 2017;46:175-98. [PMID: 28532213 DOI: 10.1146/annurev-biophys-051013-022942] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
149 Gacasan SB, Baker DL, Parrill AL. G protein-coupled receptors: the evolution of structural insight. AIMS Biophys 2017;4:491-527. [PMID: 29951585 DOI: 10.3934/biophy.2017.3.491] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
150 Proudfoot AEI, Johnson Z, Bonvin P, Handel TM. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Pharmaceuticals (Basel) 2017;10:E70. [PMID: 28792472 DOI: 10.3390/ph10030070] [Cited by in Crossref: 57] [Cited by in F6Publishing: 67] [Article Influence: 11.4] [Reference Citation Analysis]
151 Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2018;38:1188-234. [PMID: 28768055 DOI: 10.1002/med.21464] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
152 Wang J, Li W, Wang B, Hu B, Jiang H, Lai B, Li N, Cheng M. In Silicon Approach for Discovery of Chemopreventive Agents. Curr Pharmacol Rep 2017;3:184-95. [DOI: 10.1007/s40495-017-0094-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
153 Lee Y, Basith S, Choi S. Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations. J Med Chem 2018;61:1-46. [PMID: 28657745 DOI: 10.1021/acs.jmedchem.6b01453] [Cited by in Crossref: 46] [Cited by in F6Publishing: 52] [Article Influence: 9.2] [Reference Citation Analysis]
154 F Nguyen A, S Schill M, Jian M, J LiWang P. The Effect of N-Terminal Cyclization on the Function of the HIV Entry Inhibitor 5P12-RANTES. Int J Mol Sci 2017;18:E1575. [PMID: 28726743 DOI: 10.3390/ijms18071575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
155 Hutchings CJ, Koglin M, Olson WC, Marshall FH. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov. 2017;16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Cited by in Crossref: 74] [Cited by in F6Publishing: 77] [Article Influence: 14.8] [Reference Citation Analysis]
156 Bobyk KD, Mandadapu SR, Lohith K, Guzzo C, Bhargava A, Lusso P, Bewley CA. Design of HIV Coreceptor Derived Peptides That Inhibit Viral Entry at Submicromolar Concentrations. Mol Pharm 2017;14:2681-9. [PMID: 28494151 DOI: 10.1021/acs.molpharmaceut.7b00155] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
157 Wu F, Song G, de Graaf C, Stevens RC. Structure and Function of Peptide-Binding G Protein-Coupled Receptors. J Mol Biol 2017;429:2726-45. [PMID: 28705763 DOI: 10.1016/j.jmb.2017.06.022] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 7.2] [Reference Citation Analysis]
158 Wilkinson TC. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. Biochem Soc Trans 2016;44:831-7. [PMID: 27284048 DOI: 10.1042/BST20160028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
159 Gaieb Z, Morikis D. Conformational heterogeneity in CCR7 undergoes transitions to specific states upon ligand binding. Journal of Molecular Graphics and Modelling 2017;74:352-8. [DOI: 10.1016/j.jmgm.2017.04.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
160 Smith JS, Alagesan P, Desai NK, Pack TF, Wu JH, Inoue A, Freedman NJ, Rajagopal S. C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Mol Pharmacol 2017;92:136-50. [PMID: 28559424 DOI: 10.1124/mol.117.108522] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
161 Huma ZE, Sanchez J, Lim HD, Bridgford JL, Huang C, Parker BJ, Pazhamalil JG, Porebski BT, Pfleger KDG, Lane JR, Canals M, Stone MJ. Key determinants of selective binding and activation by the monocyte chemoattractant proteins at the chemokine receptor CCR2. Sci Signal 2017;10:eaai8529. [DOI: 10.1126/scisignal.aai8529] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
162 Opella SJ, Marassi FM. Applications of NMR to membrane proteins. Arch Biochem Biophys 2017;628:92-101. [PMID: 28529197 DOI: 10.1016/j.abb.2017.05.011] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
163 Tan Y, Tong P, Wang J, Zhao L, Li J, Yu Y, Chen YH, Wang J. The Membrane-Proximal Region of C-C Chemokine Receptor Type 5 Participates in the Infection of HIV-1. Front Immunol 2017;8:478. [PMID: 28484468 DOI: 10.3389/fimmu.2017.00478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
164 Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF. Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal 2017;10:eaah5756. [PMID: 28325822 DOI: 10.1126/scisignal.aah5756] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 10.6] [Reference Citation Analysis]
165 Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017;60:4735-79. [PMID: 28165741 DOI: 10.1021/acs.jmedchem.6b01309] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 11.4] [Reference Citation Analysis]
166 Coleman JL, Ngo T, Smith NJ. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell Signal 2017;33:1-9. [PMID: 28188824 DOI: 10.1016/j.cellsig.2017.02.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
167 Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. Int J Mol Sci 2017;18:E342. [PMID: 28178200 DOI: 10.3390/ijms18020342] [Cited by in Crossref: 103] [Cited by in F6Publishing: 123] [Article Influence: 20.6] [Reference Citation Analysis]
168 Abayev M, Srivastava G, Arshava B, Naider F, Anglister J. Detection of intermolecular transferred-NOE interactions in small and medium size protein complexes: RANTES complexed with a CCR5 N-terminal peptide. FEBS J 2017;284:586-601. [PMID: 28052516 DOI: 10.1111/febs.14000] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
169 Gustavsson M, Wang L, van Gils N, Stephens BS, Zhang P, Schall TJ, Yang S, Abagyan R, Chance MR, Kufareva I, Handel TM. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat Commun 2017;8:14135. [PMID: 28098154 DOI: 10.1038/ncomms14135] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 11.8] [Reference Citation Analysis]
170 Legler DF, Matti C, Laufer JM, Jakobs BD, Purvanov V, Uetz-von Allmen E, Thelen M. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention. Mol Pharmacol 2017;91:331-8. [PMID: 28082305 DOI: 10.1124/mol.116.107151] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
171 Farran B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 2017;117:303-27. [PMID: 28087443 DOI: 10.1016/j.phrs.2017.01.008] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 13.2] [Reference Citation Analysis]
172 Lingerfelt MA, Zhao P, Sharir HP, Hurst DP, Reggio PH, Abood ME. Identification of Crucial Amino Acid Residues Involved in Agonist Signaling at the GPR55 Receptor. Biochemistry 2017;56:473-86. [PMID: 28005346 DOI: 10.1021/acs.biochem.6b01013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
173 Felix J, Savvides SN. Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nat Rev Immunol 2017;17:112-29. [PMID: 28028310 DOI: 10.1038/nri.2016.134] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 6.2] [Reference Citation Analysis]
174 Sakmar TP, Huber T. Pharmacology: Inside-out receptor inhibition. Nature 2016;540:344-5. [PMID: 27926728 DOI: 10.1038/nature20486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
175 Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P, Stamos D, Abagyan R, Cherezov V, Stevens RC, IJzerman AP, Heitman LH, Tebben A, Kufareva I, Handel TM. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 2016;540:458-61. [PMID: 27926736 DOI: 10.1038/nature20605] [Cited by in Crossref: 155] [Cited by in F6Publishing: 148] [Article Influence: 25.8] [Reference Citation Analysis]
176 Cordomí A, Fourmy D, Tikhonova IG. Gut hormone GPCRs: structure, function, drug discovery. Current Opinion in Pharmacology 2016;31:63-7. [DOI: 10.1016/j.coph.2016.09.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
177 Leslie GJ, Wang J, Richardson MW, Haggarty BS, Hua KL, Duong J, Secreto AJ, Jordon AP, Romano J, Kumar KE, DeClercq JJ, Gregory PD, June CH, Root MJ, Riley JL, Holmes MC, Hoxie JA. Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathog 2016;12:e1005983. [PMID: 27855210 DOI: 10.1371/journal.ppat.1005983] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
178 Benredjem B, Girard M, Rhainds D, St-Onge G, Heveker N. Mutational Analysis of Atypical Chemokine Receptor 3 (ACKR3/CXCR7) Interaction with Its Chemokine Ligands CXCL11 and CXCL12. J Biol Chem 2017;292:31-42. [PMID: 27875312 DOI: 10.1074/jbc.M116.762252] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
179 Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016;7:483. [PMID: 27891127 DOI: 10.3389/fimmu.2016.00483] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 6.5] [Reference Citation Analysis]
180 Karlshøj S, Amarandi RM, Larsen O, Daugvilaite V, Steen A, Brvar M, Pui A, Frimurer TM, Ulven T, Rosenkilde MM. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5). J Biol Chem 2016;291:26860-74. [PMID: 27834679 DOI: 10.1074/jbc.M116.740183] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
181 Pluhackova K, Gahbauer S, Kranz F, Wassenaar TA, Böckmann RA. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. PLoS Comput Biol 2016;12:e1005169. [PMID: 27812115 DOI: 10.1371/journal.pcbi.1005169] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 9.3] [Reference Citation Analysis]
182 Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016;20:1463-75. [PMID: 27762152 DOI: 10.1080/14728222.2016.1251582] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 7.7] [Reference Citation Analysis]
183 Lu M, Wu B. Structural studies of G protein-coupled receptors. IUBMB Life 2016;68:894-903. [PMID: 27766738 DOI: 10.1002/iub.1578] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
184 Guven-maiorov E, Tsai C, Nussinov R. Pathogen mimicry of host protein-protein interfaces modulates immunity. Seminars in Cell & Developmental Biology 2016;58:136-45. [DOI: 10.1016/j.semcdb.2016.06.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
185 Peng L, Damschroder MM, Cook KE, Wu H, Dall'Acqua WF. Molecular basis for the antagonistic activity of an anti-CXCR4 antibody. MAbs 2016;8:163-75. [PMID: 26514996 DOI: 10.1080/19420862.2015.1113359] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
186 Lückmann M, Amarandi RM, Papargyri N, Jakobsen MH, Christiansen E, Jensen LJ, Pui A, Schwartz TW, Rosenkilde MM, Frimurer TM. Structure-based discovery of novel US28 small molecule ligands with different modes of action. Chem Biol Drug Des 2017;89:289-96. [PMID: 27569905 DOI: 10.1111/cbdd.12848] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
187 Shihoya W, Nishizawa T, Okuta A, Tani K, Dohmae N, Fujiyoshi Y, Nureki O, Doi T. Activation mechanism of endothelin ETB receptor by endothelin-1. Nature 2016;537:363-8. [PMID: 27595334 DOI: 10.1038/nature19319] [Cited by in Crossref: 93] [Cited by in F6Publishing: 90] [Article Influence: 15.5] [Reference Citation Analysis]
188 Yang Y, Gao M, Zhang Q, Zhang C, Yang X, Huang Z, An J. Design, synthesis, and biological characterization of novel PEG-linked dimeric modulators for CXCR4. Bioorg Med Chem 2016;24:5393-9. [PMID: 27658790 DOI: 10.1016/j.bmc.2016.08.062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
189 Gaieb Z, Lo DD, Morikis D. Molecular Mechanism of Biased Ligand Conformational Changes in CC Chemokine Receptor 7. J Chem Inf Model 2016;56:1808-22. [PMID: 27529431 DOI: 10.1021/acs.jcim.6b00367] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
190 Wescott MP, Kufareva I, Paes C, Goodman JR, Thaker Y, Puffer BA, Berdougo E, Rucker JB, Handel TM, Doranz BJ. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc Natl Acad Sci U S A 2016;113:9928-33. [PMID: 27543332 DOI: 10.1073/pnas.1601278113] [Cited by in Crossref: 65] [Cited by in F6Publishing: 64] [Article Influence: 10.8] [Reference Citation Analysis]
191 Mona CE, Besserer-offroy É, Cabana J, Lefrançois M, Boulais PE, Lefebvre M, Leduc R, Lavigne P, Heveker N, Marsault É, Escher E. Structure–Activity Relationship and Signaling of New Chimeric CXCR4 Agonists. J Med Chem 2016;59:7512-24. [DOI: 10.1021/acs.jmedchem.6b00566] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
192 Vaidehi N, Bhattacharya S. Allosteric communication pipelines in G-protein-coupled receptors. Curr Opin Pharmacol 2016;30:76-83. [PMID: 27497048 DOI: 10.1016/j.coph.2016.07.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
193 Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochemical Pharmacology 2016;114:22-39. [DOI: 10.1016/j.bcp.2016.04.014] [Cited by in Crossref: 89] [Cited by in F6Publishing: 83] [Article Influence: 14.8] [Reference Citation Analysis]
194 Szpakowska M, Dupuis N, Baragli A, Counson M, Hanson J, Piette J, Chevigné A. Human herpesvirus 8-encoded chemokine vCCL2/vMIP-II is an agonist of the atypical chemokine receptor ACKR3/CXCR7. Biochemical Pharmacology 2016;114:14-21. [DOI: 10.1016/j.bcp.2016.05.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
195 González-motos V, Kropp KA, Viejo-borbolla A. Chemokine binding proteins: An immunomodulatory strategy going viral. Cytokine & Growth Factor Reviews 2016;30:71-80. [DOI: 10.1016/j.cytogfr.2016.02.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
196 Mishra RK, Shum AK, Platanias LC, Miller RJ, Schiltz GE. Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists. Sci Rep 2016;6:30155. [PMID: 27456816 DOI: 10.1038/srep30155] [Cited by in Crossref: 30] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
197 Kufareva I. Chemokines and their receptors: insights from molecular modeling and crystallography. Curr Opin Pharmacol 2016;30:27-37. [PMID: 27459124 DOI: 10.1016/j.coph.2016.07.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
198 Cutolo P, Basdevant N, Bernadat G, Bachelerie F, Ha-Duong T. Interaction of chemokine receptor CXCR4 in monomeric and dimeric state with its endogenous ligand CXCL12: coarse-grained simulations identify differences. J Biomol Struct Dyn 2017;35:399-412. [PMID: 26813575 DOI: 10.1080/07391102.2016.1145142] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
199 Pozzobon T, Goldoni G, Viola A, Molon B. CXCR4 signaling in health and disease. Immunol Lett 2016;177:6-15. [PMID: 27363619 DOI: 10.1016/j.imlet.2016.06.006] [Cited by in Crossref: 92] [Cited by in F6Publishing: 111] [Article Influence: 15.3] [Reference Citation Analysis]
200 Dorgham K, Dejou C, Piesse C, Gorochov G, Pène J, Yssel H. Identification of the Single Immunodominant Region of the Native Human CC Chemokine Receptor 6 Recognized by Mouse Monoclonal Antibodies. PLoS One 2016;11:e0157740. [PMID: 27336468 DOI: 10.1371/journal.pone.0157740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
201 Rajasekaran D, Gröning S, Schmitz C, Zierow S, Drucker N, Bakou M, Kohl K, Mertens A, Lue H, Weber C, Xiao A, Luker G, Kapurniotu A, Lolis E, Bernhagen J. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions: EVIDENCE FOR PARTIAL ALLOSTERIC AGONISM IN COMPARISON WITH CXCL12 CHEMOKINE. J Biol Chem 2016;291:15881-95. [PMID: 27226569 DOI: 10.1074/jbc.M116.717751] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 6.7] [Reference Citation Analysis]
202 Barington L, Rummel PC, Lückmann M, Pihl H, Larsen O, Daugvilaite V, Johnsen AH, Frimurer TM, Karlshøj S, Rosenkilde MM. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding. J Biol Chem 2016;291:16208-20. [PMID: 27226537 DOI: 10.1074/jbc.M115.706747] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
203 Douthwaite JA, Finch DK, Mustelin T, Wilkinson TC. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases. Pharmacol Ther 2017;169:113-23. [PMID: 27153991 DOI: 10.1016/j.pharmthera.2016.04.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
204 Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016;114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 10.8] [Reference Citation Analysis]
205 Liang WG, Triandafillou CG, Huang TY, Zulueta MM, Banerjee S, Dinner AR, Hung SC, Tang WJ. Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci U S A 2016;113:5000-5. [PMID: 27091995 DOI: 10.1073/pnas.1523981113] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
206 Angelov B, Angelova A, Drechsler M, Garamus VM, Mutafchieva R, Lesieur S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter 2015;11:3686-92. [PMID: 25820228 DOI: 10.1039/c5sm00169b] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 12.5] [Reference Citation Analysis]
207 Griffiths K, Dolezal O, Cao B, Nilsson SK, See HB, Pfleger KDG, Roche M, Gorry PR, Pow A, Viduka K, Lim K, Lu BGC, Chang DHC, Murray-Rust T, Kvansakul M, Perugini MA, Dogovski C, Doerflinger M, Zhang Y, Parisi K, Casey JL, Nuttall SD, Foley M. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem 2016;291:12641-57. [PMID: 27036939 DOI: 10.1074/jbc.M116.721050] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]
208 Ngo T, Kufareva I, Coleman JLj, Graham RM, Abagyan R, Smith NJ. Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol 2016;173:2934-51. [PMID: 26837045 DOI: 10.1111/bph.13452] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
209 Kieslich CA, Tamamis P, Guzman YA, Onel M, Floudas CA. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism. PLoS One 2016;11:e0148974. [PMID: 26859389 DOI: 10.1371/journal.pone.0148974] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
210 Hauser MA, Kindinger I, Laufer JM, Späte AK, Bucher D, Vanes SL, Krueger WA, Wittmann V, Legler DF. Distinct CCR7 glycosylation pattern shapes receptor signaling and endocytosis to modulate chemotactic responses. J Leukoc Biol 2016;99:993-1007. [PMID: 26819318 DOI: 10.1189/jlb.2VMA0915-432RR] [Cited by in Crossref: 41] [Cited by in F6Publishing: 47] [Article Influence: 6.8] [Reference Citation Analysis]
211 de Wit RH, de Munnik SM, Leurs R, Vischer HF, Smit MJ. Molecular Pharmacology of Chemokine Receptors. Methods Enzymol 2016;570:457-515. [PMID: 26921959 DOI: 10.1016/bs.mie.2015.12.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
212 Vacchini A, Locati M, Borroni EM. Overview and potential unifying themes of the atypical chemokine receptor family. J Leukoc Biol 2016;99:883-92. [PMID: 26740381 DOI: 10.1189/jlb.2MR1015-477R] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
213 Hauser MA, Legler DF. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol 2016;99:869-82. [PMID: 26729814 DOI: 10.1189/jlb.2MR0815-380R] [Cited by in Crossref: 88] [Cited by in F6Publishing: 101] [Article Influence: 14.7] [Reference Citation Analysis]
214 Mona CE, Besserer-offroy É, Cabana J, Leduc R, Lavigne P, Heveker N, Marsault É, Escher E. Design, synthesis, and biological evaluation of CXCR4 ligands. Org Biomol Chem 2016;14:10298-311. [DOI: 10.1039/c6ob01484d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
215 Isahak N, Sanchez J, Perrier S, Stone MJ, Payne RJ. Synthesis of polymers and nanoparticles bearing polystyrene sulfonate brushes for chemokine binding. Org Biomol Chem 2016;14:5652-8. [DOI: 10.1039/c6ob00270f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
216 Szpakowska M, Chevigné A. vCCL2/vMIP-II, the viral master KEYmokine. Journal of Leukocyte Biology 2016;99:893-900. [DOI: 10.1189/jlb.2mr0815-383r] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
217 Lubman OY, Fremont DH. Parallel Evolution of Chemokine Binding by Structurally Related Herpesvirus Decoy Receptors. Structure 2016;24:57-69. [PMID: 26671708 DOI: 10.1016/j.str.2015.10.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
218 O'Hayre M, Inoue A, Kufareva I, Wang Z, Mikelis CM, Drummond RA, Avino S, Finkel K, Kalim KW, DiPasquale G, Guo F, Aoki J, Zheng Y, Lionakis MS, Molinolo AA, Gutkind JS. Inactivating mutations in GNA13 and RHOA in Burkitt's lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gα13/RhoA axis in B cells. Oncogene 2016;35:3771-80. [PMID: 26616858 DOI: 10.1038/onc.2015.442] [Cited by in Crossref: 41] [Cited by in F6Publishing: 47] [Article Influence: 5.9] [Reference Citation Analysis]
219 Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2016;59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Cited by in Crossref: 178] [Cited by in F6Publishing: 186] [Article Influence: 25.4] [Reference Citation Analysis]
220 Andrews SP, Cox RJ. Small Molecule CXCR3 Antagonists. J Med Chem 2016;59:2894-917. [PMID: 26535614 DOI: 10.1021/acs.jmedchem.5b01337] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
221 Yoshiura C, Ueda T, Kofuku Y, Matsumoto M, Okude J, Kondo K, Shiraishi Y, Shimada I. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments. J Biomol NMR 2015;63:333-40. [PMID: 26472202 DOI: 10.1007/s10858-015-9992-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
222 Zachariassen ZG, Karlshøj S, Haug BE, Rosenkilde MM, Våbenø J. Probing the Molecular Interactions between CXC Chemokine Receptor 4 (CXCR4) and an Arginine-Based Tripeptidomimetic Antagonist (KRH-1636). J Med Chem 2015;58:8141-53. [PMID: 26397724 DOI: 10.1021/acs.jmedchem.5b00987] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
223 Herring CA, Singer CM, Ermakova EA, Khairutdinov BI, Zuev YF, Jacobs DJ, Nesmelova IV. Dynamics and thermodynamic properties of CXCL7 chemokine. Proteins 2015;83:1987-2007. [PMID: 26297927 DOI: 10.1002/prot.24913] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
224 Sand LG, Jochemsen AG, Beletkaia E, Schmidt T, Hogendoorn PC, Szuhai K. Novel splice variants of CXCR4 identified by transcriptome sequencing. Biochem Biophys Res Commun 2015;466:89-94. [PMID: 26321665 DOI: 10.1016/j.bbrc.2015.08.113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
225 Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015;6:429. [PMID: 26347749 DOI: 10.3389/fimmu.2015.00429] [Cited by in Crossref: 99] [Cited by in F6Publishing: 109] [Article Influence: 14.1] [Reference Citation Analysis]
226 Rana S, Sahoo AR, Majhi BK. Allosterism in human complement component 5a ((h)C5a): a damper of C5a receptor (C5aR) signaling. J Biomol Struct Dyn 2016;34:1201-13. [PMID: 26212097 DOI: 10.1080/07391102.2015.1073634] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
227 Vyas VK, Ghate M, Patel K, Qureshi G, Shah S. Homology modeling, binding site identification and docking study of human angiotensin II type I (Ang II-AT1) receptor. Biomedicine & Pharmacotherapy 2015;74:42-8. [DOI: 10.1016/j.biopha.2015.07.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
228 Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V, Wang C, Siu FY, Song G, Reedtz-Runge S, Pascal BD, Wu B, Potter CS, Zhou H, Griffin PR, Carragher B, Yang H, Wang MW, Stevens RC, Jiang H. Conformational states of the full-length glucagon receptor. Nat Commun 2015;6:7859. [PMID: 26227798 DOI: 10.1038/ncomms8859] [Cited by in Crossref: 87] [Cited by in F6Publishing: 78] [Article Influence: 12.4] [Reference Citation Analysis]
229 Hanes MS, Salanga CL, Chowdry AB, Comerford I, McColl SR, Kufareva I, Handel TM. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J Biol Chem 2015;290:22385-97. [PMID: 26216880 DOI: 10.1074/jbc.M115.675108] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
230 Christiaansen A, Varga SM, Spencer JV. Viral manipulation of the host immune response. Curr Opin Immunol 2015;36:54-60. [PMID: 26177523 DOI: 10.1016/j.coi.2015.06.012] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
231 Job F, Settele F, Lorey S, Rundfeldt C, Baumann L, Beck-Sickinger AG, Haupts U, Lilie H, Bosse-Doenecke E. Ubiquitin is a versatile scaffold protein for the generation of molecules with de novo binding and advantageous drug-like properties. FEBS Open Bio 2015;5:579-93. [PMID: 26258013 DOI: 10.1016/j.fob.2015.07.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
232 Piscitelli CL, Kean J, de Graaf C, Deupi X. A Molecular Pharmacologist's Guide to G Protein-Coupled Receptor Crystallography. Mol Pharmacol 2015;88:536-51. [PMID: 26152196 DOI: 10.1124/mol.115.099663] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
233 Vischer HF, Castro M, Pin JP. G Protein-Coupled Receptor Multimers: A Question Still Open Despite the Use of Novel Approaches. Mol Pharmacol 2015;88:561-71. [PMID: 26138074 DOI: 10.1124/mol.115.099440] [Cited by in Crossref: 50] [Cited by in F6Publishing: 29] [Article Influence: 7.1] [Reference Citation Analysis]
234 Våbenø J, Haug BE, Rosenkilde MM. Progress toward rationally designed small-molecule peptide and peptidomimetic CXCR4 antagonists. Future Medicinal Chemistry 2015;7:1261-83. [DOI: 10.4155/fmc.15.64] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
235 Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res. 2015;121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Cited by in Crossref: 133] [Cited by in F6Publishing: 149] [Article Influence: 19.0] [Reference Citation Analysis]
236 Handel TM. The Structure of a CXCR4:Chemokine Complex. Front Immunol 2015;6:282. [PMID: 26097480 DOI: 10.3389/fimmu.2015.00282] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
237 Columbus L. Post-expression strategies for structural investigations of membrane proteins. Curr Opin Struct Biol 2015;32:131-8. [PMID: 25951412 DOI: 10.1016/j.sbi.2015.04.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
238 Deshauer C, Morgan AM, Ryan EO, Handel TM, Prestegard JH, Wang X. Interactions of the Chemokine CCL5/RANTES with Medium-Sized Chondroitin Sulfate Ligands. Structure 2015;23:1066-77. [PMID: 25982530 DOI: 10.1016/j.str.2015.03.024] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
239 Standfuss J. Structural biology. Viral chemokine mimicry. Science 2015;347:1071-2. [PMID: 25745149 DOI: 10.1126/science.aaa7998] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
240 Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015;6:66. [PMID: 25873898 DOI: 10.3389/fphar.2015.00066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
241 Krumm BE, Grisshammer R. Peptide ligand recognition by G protein-coupled receptors. Front Pharmacol 2015;6:48. [PMID: 25852552 DOI: 10.3389/fphar.2015.00048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
242 Proudfoot AE, Bonvin P, Power CA. Targeting chemokines: Pathogens can, why can't we? Cytokine 2015;74:259-67. [PMID: 25753743 DOI: 10.1016/j.cyto.2015.02.011] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
243 Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 2015;93:372-83. [PMID: 25708536 DOI: 10.1038/icb.2015.15] [Cited by in Crossref: 114] [Cited by in F6Publishing: 109] [Article Influence: 16.3] [Reference Citation Analysis]