BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bertrand D, Lee CL, Flood D, Marger F, Donnelly-roberts D, Esbenshade TA. Therapeutic Potential of α 7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015;67:1025-73. [DOI: 10.1124/pr.113.008581] [Cited by in Crossref: 87] [Cited by in F6Publishing: 94] [Article Influence: 12.4] [Reference Citation Analysis]
Number Citing Articles
1 Peng W, Mao L, Dang X. The emergence of the uniquely human α7 nicotinic acetylcholine receptor gene and its roles in inflammation. Gene 2022;842:146777. [PMID: 35952843 DOI: 10.1016/j.gene.2022.146777] [Reference Citation Analysis]
2 Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2022:S2090-1232(22)00193-X. [PMID: 35998874 DOI: 10.1016/j.jare.2022.08.012] [Reference Citation Analysis]
3 Ma Y, Jun H, Wu J. Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism. Trends Immunol 2022:S1471-4906(22)00143-0. [PMID: 35931611 DOI: 10.1016/j.it.2022.07.006] [Reference Citation Analysis]
4 Loring RH. Speculation on How RIC-3 and Other Chaperones Facilitate α7 Nicotinic Receptor Folding and Assembly. Molecules 2022;27:4527. [PMID: 35889400 DOI: 10.3390/molecules27144527] [Reference Citation Analysis]
5 Yamini P, Ray R, Yadav S, Dhaliwal J, Yadav M, Kondepudi KK, Chopra K. α7nAChR activation protects against oxidative stress, neuroinflammation and central insulin resistance in ICV-STZ induced sporadic Alzheimer's disease. Pharmacology Biochemistry and Behavior 2022. [DOI: 10.1016/j.pbb.2022.173402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wei S, Wang D, Zhou H, Xia L, Tian Y, Dai Q, Zhu R, Wang W, Chen D, Xiu M, Wang L, Zhang X. Demographics, clinical characteristics and cognitive symptoms of heavy smokers and non-heavy smokers in Chinese male patients with chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022. [PMID: 35474549 DOI: 10.1007/s00406-022-01410-y] [Reference Citation Analysis]
7 Zlotos DP, Mandour YM, Jensen AA. Strychnine and its mono- and dimeric analogues: a pharmaco-chemical perspective. Nat Prod Rep 2022. [PMID: 35380133 DOI: 10.1039/d1np00079a] [Reference Citation Analysis]
8 Hernández-sámano AC, Falcón A, Zamudio F, Michel-morfín JE, Landa-jaime V, López-vera E, Jeziorski MC, Aguilar MB. A short framework-III (mini-M-2) conotoxin from the venom of a vermivorous species, Conus archon, inhibits human neuronal nicotinic acetylcholine receptors. Peptides 2022. [DOI: 10.1016/j.peptides.2022.170785] [Reference Citation Analysis]
9 Lin Y, Yeh C, Kuo K, Fong I, Yadav VK, Kounis NG, Hu P, Hung M, Cheng X. Apolipoprotein (a)/Lipoprotein(a)-Induced Oxidative-Inflammatory α7-nAChR/p38 MAPK/IL-6/RhoA-GTP Signaling Axis and M1 Macrophage Polarization Modulate Inflammation-Associated Development of Coronary Artery Spasm. Oxidative Medicine and Cellular Longevity 2022;2022:1-26. [DOI: 10.1155/2022/9964689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Xie J, Li X, Zhang L, Liu C, Leung JW, Liu P, Yu Z, Liu R, Li L, Huang C, Huang Z. Genistein-3'-sodium sulfonate ameliorates cerebral ischemia injuries by blocking neuroinflammation through the α7nAChR-JAK2/STAT3 signaling pathway in rats. Phytomedicine 2021;93:153745. [PMID: 34634743 DOI: 10.1016/j.phymed.2021.153745] [Reference Citation Analysis]
11 Madjroh N, Mellou E, Æbelø L, Davies PA, Söderhielm PC, Jensen AA. Probing the molecular basis for signal transduction through the Zinc-Activated Channel (ZAC). Biochem Pharmacol 2021;193:114781. [PMID: 34560053 DOI: 10.1016/j.bcp.2021.114781] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Singh NK, Garabadu D. Quercetin Exhibits α7nAChR/Nrf2/HO-1-Mediated Neuroprotection Against STZ-Induced Mitochondrial Toxicity and Cognitive Impairments in Experimental Rodents. Neurotox Res 2021;39:1859-79. [PMID: 34554409 DOI: 10.1007/s12640-021-00410-5] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Mashimo M, Moriwaki Y, Misawa H, Kawashima K, Fujii T. Regulation of Immune Functions by Non-Neuronal Acetylcholine (ACh) via Muscarinic and Nicotinic ACh Receptors. Int J Mol Sci 2021;22:6818. [PMID: 34202925 DOI: 10.3390/ijms22136818] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Li H, Gao J, Chang Y, Li K, Wang L, Ju C, Zhang F. JWX-A0108, a positive allosteric modulator of α7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF-κB-mediated inflammation. Int Immunopharmacol 2021;96:107726. [PMID: 33975230 DOI: 10.1016/j.intimp.2021.107726] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Olson A, Zhang F, Cao H, Baranova A, Slavin M. In silico Gene Set and Pathway Enrichment Analyses Highlight Involvement of Ion Transport in Cholinergic Pathways in Autism: Rationale for Nutritional Intervention. Front Neurosci 2021;15:648410. [PMID: 33958984 DOI: 10.3389/fnins.2021.648410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sun P, Liu DG, Ye XM. Nicotinic Acetylcholine Receptor α7 Subunit Is an Essential Regulator of Seizure Susceptibility. Front Neurol 2021;12:656752. [PMID: 33912128 DOI: 10.3389/fneur.2021.656752] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Wu SJ, Shi ZW, Wang X, Ren FF, Xie ZY, Lei L, Chen P. Activation of the Cholinergic Anti-inflammatory Pathway Attenuated Angiotension II-Dependent Hypertension and Renal Injury. Front Pharmacol 2021;12:593682. [PMID: 33815099 DOI: 10.3389/fphar.2021.593682] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Vetel S, Vercouillie J, Buron F, Vergote J, Tauber C, Busson J, Chicheri G, Routier S, Sérrière S, Chalon S. Longitudinal PET Imaging of α7 Nicotinic Acetylcholine Receptors with [18F]ASEM in a Rat Model of Parkinson's Disease. Mol Imaging Biol 2020;22:348-57. [PMID: 31286348 DOI: 10.1007/s11307-019-01400-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Martín-Sánchez C, Alés E, Balseiro-Gómez S, Atienza G, Arnalich F, Bordas A, Cedillo JL, Extremera M, Chávez-Reyes A, Montiel C. The human-specific duplicated α7 gene inhibits the ancestral α7, negatively regulating nicotinic acetylcholine receptor-mediated transmitter release. J Biol Chem 2021;296:100341. [PMID: 33515545 DOI: 10.1016/j.jbc.2021.100341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Fan W, Zhang Y, Li X, Xu C. S-oxiracetam Facilitates Cognitive Restoration after Ischemic Stroke by Activating α7nAChR and the PI3K-Mediated Pathway. Neurochem Res 2021;46:888-904. [PMID: 33481205 DOI: 10.1007/s11064-021-03233-0] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
21 Nacer SA, Letsinger AC, Otto S, DeFilipp JS, Nikolova VD, Riddick NV, Stevanovic KD, Cushman JD, Yakel JL. Loss of α7 nicotinic acetylcholine receptors in GABAergic neurons causes sex-dependent decreases in radial glia-like cell quantity and impairments in cognitive and social behavior. Brain Struct Funct 2021;226:365-79. [PMID: 33398432 DOI: 10.1007/s00429-020-02179-3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Wu J, Cao C, Loch RA, Tiiman A, Luo J. Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020;53:e12. [PMID: 33148356 DOI: 10.1017/S0033583520000086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Camacho-hernandez GA, Taylor P. Lessons from nature: Structural studies and drug design driven by a homologous surrogate from invertebrates, AChBP. Neuropharmacology 2020;179:108108. [DOI: 10.1016/j.neuropharm.2020.108108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Verma MK, Goel RN, Bokare AM, Dandekar MP, Koul S, Desai S, Tota S, Singh N, Nigade PB, Patil VB, Modi D, Mehta M, Gundu J, Walunj SS, Karche NP, Sinha N, Kamboj RK, Palle VP. LL-00066471, a novel positive allosteric modulator of α7 nicotinic acetylcholine receptor ameliorates cognitive and sensorimotor gating deficits in animal models: Discovery and preclinical characterization. Eur J Pharmacol 2021;891:173685. [PMID: 33127363 DOI: 10.1016/j.ejphar.2020.173685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sun Y, Lin D, Wang J, Geng M, Xue M, Lang Y, Cui L, Hao Y, Mu S, Wu D, Liang L, Wu A; Tropisetron and Delirium Group. Effect of Tropisetron on Prevention of Emergence Delirium in Patients After Noncardiac Surgery: A Trial Protocol. JAMA Netw Open 2020;3:e2013443. [PMID: 33052400 DOI: 10.1001/jamanetworkopen.2020.13443] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Gahring LC, Myers EJ, Rogers SW. Inhaled aerosolized nicotine suppresses the lung eosinophilic response to house dust mite allergen. Am J Physiol Lung Cell Mol Physiol 2020;319:L683-92. [PMID: 32726138 DOI: 10.1152/ajplung.00227.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Maldifassi MC, Momboisse F, Guerra MJ, Vielma AH, Maripillán J, Báez-Matus X, Flores-Muñoz C, Cádiz B, Schmachtenberg O, Martínez AD, Cárdenas AM. The interplay between α7 nicotinic acetylcholine receptors, pannexin-1 channels and P2X7 receptors elicit exocytosis in chromaffin cells. J Neurochem 2021;157:1789-808. [PMID: 32931038 DOI: 10.1111/jnc.15186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2021;219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
29 Duce JA, Zhu X, Jacobson LH, Beart PM. Therapeutics for dementia and Alzheimer's disease: New directions for precision medicine. Br J Pharmacol 2019;176:3409-12. [PMID: 31468515 DOI: 10.1111/bph.14767] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Szigeti K, Ihnatovych I, Birkaya B, Chen Z, Ouf A, Indurthi DC, Bard JE, Kann J, Adams A, Chaves L, Sule N, Reisch JS, Pavlik V, Benedict RHB, Auerbach A, Wilding G. CHRFAM7A: A human specific fusion gene, accounts for the translational gap for cholinergic strategies in Alzheimer's disease. EBioMedicine 2020;59:102892. [PMID: 32818803 DOI: 10.1016/j.ebiom.2020.102892] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
31 Kweon H, Gu S, Witham E, Dhara M, Yu H, Mandon ED, Jawhari A, Bredt DS. NACHO Engages N-Glycosylation ER Chaperone Pathways for α7 Nicotinic Receptor Assembly. Cell Reports 2020;32:108025. [DOI: 10.1016/j.celrep.2020.108025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
32 Mamiya T, Tanase S, Takeuchi S, Kato S, Ito A, Hiramatsu M, Nabeshima T. Galantamine improves enhanced impulsivity, impairments of attention and long-term potentiation induced by prenatal nicotine exposure to mice. Biochem Pharmacol 2020;180:114139. [PMID: 32652142 DOI: 10.1016/j.bcp.2020.114139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Hernández-Sámano AC, Falcón A, Zamudio F, Ortíz-Arellano MA, López-Vera E, Aguilar MB. A turripeptide from Polystira nobilis venom inhibits human α3β2 and α7 nicotinic acetylcholine receptors. Insect Biochem Mol Biol 2020;124:103416. [PMID: 32592834 DOI: 10.1016/j.ibmb.2020.103416] [Reference Citation Analysis]
34 Xing H, Andrud KW, Soti F, Rouchaud A, Jahn SC, Lu Z, Cho YH, Habibi S, Corsino P, Slavov S, Rocca JR, Lindstrom JM, Lukas RJ, Kem WR. A Methyl Scan of the Pyrrolidinium Ring of Nicotine Reveals Significant Differences in Its Interactions with α7 and α4β2 Nicotinic Acetylcholine Receptors. Mol Pharmacol 2020;98:168-80. [PMID: 32474444 DOI: 10.1124/mol.119.118786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Antonio-Tolentino K, Hopkins CR. Selective α7 nicotinic receptor agonists and positive allosteric modulators for the treatment of schizophrenia - a review. Expert Opin Investig Drugs 2020;29:603-10. [PMID: 32396418 DOI: 10.1080/13543784.2020.1764938] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
36 Cieslikiewicz-Bouet M, Naldi M, Bartolini M, Pérez B, Servent D, Jean L, Aráoz R, Renard PY. Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor. Biochem Pharmacol 2020;177:114010. [PMID: 32360492 DOI: 10.1016/j.bcp.2020.114010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Vulfius CA, Lebedev DS, Kryukova EV, Kudryavtsev DS, Kolbaev SN, Utkin YN, Tsetlin VI. PNU-120596, a positive allosteric modulator of mammalian α7 nicotinic acetylcholine receptor, is a negative modulator of ligand-gated chloride-selective channels of the gastropod Lymnaea stagnalis. J Neurochem 2020;155:274-84. [PMID: 32248535 DOI: 10.1111/jnc.15020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, Mohammadi A, Doustvandi MA, Baradaran B. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 2020;6:e03611. [PMID: 32215331 DOI: 10.1016/j.heliyon.2020.e03611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
39 Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 2020;40:1593-678. [PMID: 32115745 DOI: 10.1002/med.21666] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
40 Wang X, Daley C, Gakhar V, Lange HS, Vardigan JD, Pearson M, Zhou X, Warren L, Miller CO, Belden M, Harvey AJ, Grishin AA, Coles CJ, O'Connor SM, Thomson F, Duffy JL, Bell IM, Uslaner JM. Pharmacological Characterization of the Novel and Selective α7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375. J Pharmacol Exp Ther 2020;373:311-24. [PMID: 32094294 DOI: 10.1124/jpet.119.263483] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
41 Xing H, Keshwah S, Rouchaud A, Kem WR. A Pharmacological Comparison of Two Isomeric Nicotinic Receptor Agonists: The Marine Toxin Isoanatabine and the Tobacco Alkaloid Anatabine. Mar Drugs 2020;18:E106. [PMID: 32053997 DOI: 10.3390/md18020106] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
42 Azimi M, Oemisch M, Womelsdorf T. Dissociation of nicotinic α7 and α4/β2 sub-receptor agonists for enhancing learning and attentional filtering in nonhuman primates. Psychopharmacology 2020;237:997-1010. [DOI: 10.1007/s00213-019-05430-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Tregellas JR, Wylie KP. Alpha7 Nicotinic Receptors as Therapeutic Targets in Schizophrenia. Nicotine Tob Res 2019;21:349-56. [PMID: 30137618 DOI: 10.1093/ntr/nty034] [Cited by in Crossref: 25] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
44 Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019;71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
45 Sinha N, Karche NP, Verma MK, Walunj SS, Nigade PB, Jana G, Kurhade SP, Hajare AK, Tilekar AR, Jadhav GR, Thube BR, Shaikh JS, Balgude S, Singh LB, Mahimane V, Adurkar SK, Hatnapure G, Raje F, Bhosale Y, Bhanage D, Sachchidanand S, Dixit R, Gupta R, Bokare AM, Dandekar M, Bharne A, Chatterjee M, Desai S, Koul S, Modi D, Mehta M, Patil V, Singh M, Gundu J, Goel RN, Shah C, Sharma S, Bakhle D, Kamboj RK, Palle VP. Discovery of Novel, Potent, Brain-Permeable, and Orally Efficacious Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptor [4-(5-(4-Chlorophenyl)-4-methyl-2-propionylthiophen-3-yl)benzenesulfonamide]: Structure-Activity Relationship and Preclinical Characterization. J Med Chem 2020;63:944-60. [PMID: 31755711 DOI: 10.1021/acs.jmedchem.9b01569] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
46 Camacho-Hernandez GA, Stokes C, Duggan BM, Kaczanowska K, Brandao-Araiza S, Doan L, Papke RL, Taylor P. Synthesis, Pharmacological Characterization, and Structure-Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. J Med Chem 2019;62:10376-90. [PMID: 31675224 DOI: 10.1021/acs.jmedchem.9b01467] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
47 Hua Y, Yang B, Chen Q, Zhang J, Hu J, Fan Y. Activation of α7 Nicotinic Acetylcholine Receptor Protects Against 1-Methyl-4-Phenylpyridinium-Induced Astroglial Apoptosis. Front Cell Neurosci 2019;13:507. [PMID: 31780901 DOI: 10.3389/fncel.2019.00507] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
48 Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019;26:4885-913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
49 Fernandes P, Pereira D, Watkins PB, Bertrand D. Differentiating the Pharmacodynamics and Toxicology of Macrolide and Ketolide Antibiotics. J Med Chem 2020;63:6462-73. [PMID: 31644280 DOI: 10.1021/acs.jmedchem.9b01159] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
50 Silva GM, Barcelos MP, Poiani JGC, Hage-Melim LIDS, da Silva CHTP. Allosteric Modulators of Potential Targets Related to Alzheimer's Disease: a Review. ChemMedChem 2019;14:1467-83. [PMID: 31310701 DOI: 10.1002/cmdc.201900299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Jiang Y, Yuan H, Huang L, Hou X, Zhou R, Dang X. Global proteomic profiling of the uniquely human CHRFAM7A gene in transgenic mouse brain. Gene 2019;714:143996. [PMID: 31348980 DOI: 10.1016/j.gene.2019.143996] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
52 Hernández-Sámano AC, Falcón A, Zamudio F, Batista CVF, Michel-Morfín JE, Landa-Jaime V, López-Vera E, Jeziorski MC, Aguilar MB. αD-Conotoxins in Species of the Eastern Pacific: The Case of Conus princeps from Mexico. Toxins (Basel) 2019;11:E405. [PMID: 31336928 DOI: 10.3390/toxins11070405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
53 van Hout M, Valdes A, Christensen SB, Tran PT, Watkins M, Gajewiak J, Jensen AA, Olivera BM, McIntosh JM. α-Conotoxin VnIB from Conus ventricosus is a potent and selective antagonist of α6β4* nicotinic acetylcholine receptors. Neuropharmacology 2019;157:107691. [PMID: 31255696 DOI: 10.1016/j.neuropharm.2019.107691] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
54 Dawe GB, Yu H, Gu S, Blackler AN, Matta JA, Siuda ER, Rex EB, Bredt DS. α7 nicotinic acetylcholine receptor upregulation by anti-apoptotic Bcl-2 proteins. Nat Commun 2019;10:2746. [PMID: 31227712 DOI: 10.1038/s41467-019-10723-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
55 Ulleryd MA, Mjörnstedt F, Panagaki D, Yang LJ, Engevall K, Gutiérrez S, Wang Y, Gan LM, Nilsson H, Michaëlsson E, Johansson ME. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 2019;287:122-33. [PMID: 31260875 DOI: 10.1016/j.atherosclerosis.2019.06.903] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
56 Stokes C, Garai S, Kulkarni AR, Cantwell LN, Noviello CM, Hibbs RE, Horenstein NA, Abboud KA, Thakur GA, Papke RL. Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant β Subunits Acquire Sensitivity to α7-Selective Positive Allosteric Modulators. J Pharmacol Exp Ther 2019;370:252-68. [PMID: 31175218 DOI: 10.1124/jpet.119.259499] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
57 Tao M, Liu Q, Miyazaki Y, Canning BJ. Nicotinic receptor dependent regulation of cough and other airway defensive reflexes. Pulm Pharmacol Ther 2019;58:101810. [PMID: 31181318 DOI: 10.1016/j.pupt.2019.101810] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
58 van Goethem NP, Paes D, Puzzo D, Fedele E, Rebosio C, Gulisano W, Palmeri A, Wennogle LP, Peng Y, Bertrand D, Prickaerts J. Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition. Cell Signal 2019;62:109338. [PMID: 31176021 DOI: 10.1016/j.cellsig.2019.06.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
59 Jiang T, Wu M, Zhang Z, Yan C, Ma Z, He S, Yuan W, Pu K, Wang Q. Electroacupuncture attenuated cerebral ischemic injury and neuroinflammation through α7nAChR-mediated inhibition of NLRP3 inflammasome in stroke rats. Mol Med 2019;25:22. [PMID: 31117961 DOI: 10.1186/s10020-019-0091-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 31] [Article Influence: 6.7] [Reference Citation Analysis]
60 Cecon E, Dam J, Luka M, Gautier C, Chollet AM, Delagrange P, Danober L, Jockers R. Quantitative assessment of oligomeric amyloid β peptide binding to α7 nicotinic receptor. Br J Pharmacol 2019;176:3475-88. [PMID: 30981214 DOI: 10.1111/bph.14688] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
61 Chen X, Zhang Y, Cheng RD, Zhang J, Li JB, Liang F, Tian L, Zhu GY, Ye XM, Li XM, Sun P. RETRACTED: Nicotinic acetylcholine receptor α7 subunit maybe a risk factor of seizure susceptibility. Neurosci Lett 2019;704:15-20. [PMID: 30946925 DOI: 10.1016/j.neulet.2019.03.053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Wang D, Meng Q, Leech CA, Yepuri N, Zhang L, Holz GG, Wang C, Cooney RN. α7 Nicotinic Acetylcholine Receptor Regulates the Function and Viability of L Cells. Endocrinology 2018;159:3132-42. [PMID: 29992246 DOI: 10.1210/en.2018-00433] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
63 Li DJ, Tong J, Zeng FY, Guo M, Li YH, Wang H, Wang P. Nicotinic ACh receptor α7 inhibits PDGF-induced migration of vascular smooth muscle cells by activating mitochondrial deacetylase sirtuin 3. Br J Pharmacol 2019;176:4388-401. [PMID: 30270436 DOI: 10.1111/bph.14506] [Cited by in Crossref: 20] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
64 Chan T, Williams E, Cohen O, Eliceiri BP, Baird A, Costantini TW. CHRFAM7A alters binding to the neuronal alpha-7 nicotinic acetylcholine receptor. Neurosci Lett 2019;690:126-31. [PMID: 30308236 DOI: 10.1016/j.neulet.2018.10.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
65 Valentine G, Sofuoglu M. Cognitive Effects of Nicotine: Recent Progress. Curr Neuropharmacol 2018;16:403-14. [PMID: 29110618 DOI: 10.2174/1570159X15666171103152136] [Cited by in Crossref: 48] [Cited by in F6Publishing: 67] [Article Influence: 12.0] [Reference Citation Analysis]
66 Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? Journal of the Neurological Sciences 2018;392:8-21. [DOI: 10.1016/j.jns.2018.06.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
67 Gillentine MA, Lozoya R, Yin J, Grochowski CM, White JJ, Schaaf CP, Calarge CA. CHRNA7 copy number gains are enriched in adolescents with major depressive and anxiety disorders. J Affect Disord 2018;239:247-52. [PMID: 30029151 DOI: 10.1016/j.jad.2018.07.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
68 Laule CF, Wing CR, Odean EJ, Wilcox JA, Gilbert JS, Regal JF. Effect of nicotine on placental ischemia-induced complement activation and hypertension in the rat. J Immunotoxicol 2017;14:235-40. [PMID: 29185370 DOI: 10.1080/1547691X.2017.1394934] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
69 Elnagar MR, Walls AB, Helal GK, Hamada FM, Thomsen MS, Jensen AA. Functional characterization of α7 nicotinic acetylcholine and NMDA receptor signaling in SH-SY5Y neuroblastoma cells in an ERK phosphorylation assay. European Journal of Pharmacology 2018;826:106-13. [DOI: 10.1016/j.ejphar.2018.02.047] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
70 Manetti D, Bellucci C, Chiaramonte N, Dei S, Teodori E, Romanelli MN. Designing selective modulators for the nicotinic receptor subtypes: challenges and opportunities. Future Med Chem 2018;10:433-59. [PMID: 29451400 DOI: 10.4155/fmc-2017-0169] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
71 Matera C, Dondio G, Braida D, Ponzoni L, De Amici M, Sala M, Dallanoce C. In vivo and in vitro ADMET profiling and in vivo pharmacodynamic investigations of a selective α7 nicotinic acetylcholine receptor agonist with a spirocyclic Δ 2 -isoxazoline molecular skeleton. European Journal of Pharmacology 2018;820:265-73. [DOI: 10.1016/j.ejphar.2017.12.047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
72 Seyedabadi M, Rahimian R, Ghia JE. The role of alpha7 nicotinic acetylcholine receptors in inflammatory bowel disease: involvement of different cellular pathways. Expert Opin Ther Targets 2018;22:161-76. [PMID: 29298542 DOI: 10.1080/14728222.2018.1420166] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
73 Foucault-Fruchard L, Tronel C, Bodard S, Gulhan Z, Busson J, Chalon S, Antier D. Alpha-7 nicotinic acetylcholine receptor agonist treatment in a rat model of Huntington's disease and involvement of heme oxygenase-1. Neural Regen Res 2018;13:737-41. [PMID: 29722329 DOI: 10.4103/1673-5374.230301] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
74 Elnagar MR, Walls AB, Helal GK, Hamada FM, Thomsen MS, Jensen AA. Probing the putative α7 nAChR/NMDAR complex in human and murine cortex and hippocampus: Different degrees of complex formation in healthy and Alzheimer brain tissue. PLoS One 2017;12:e0189513. [PMID: 29261717 DOI: 10.1371/journal.pone.0189513] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
75 Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, Boland S, Chaltin P, Brandao-Neto J, von Delft F, Touw WG, Joosten RP, Liekens S, Tytgat J, Ulens C. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J Biol Chem 2018;293:2534-45. [PMID: 29237730 DOI: 10.1074/jbc.M117.815316] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
76 Britvin SN, Rumyantsev AM. Crystal structure of (1S,4S)-2,5-diazo-niabi-cyclo[2.2.1]heptane dibromide. Acta Crystallogr E Crystallogr Commun 2017;73:1861-5. [PMID: 29250403 DOI: 10.1107/S2056989017015870] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
77 Yang T, Xiao T, Sun Q, Wang K. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials. Acta Pharm Sin B 2017;7:611-22. [PMID: 29159020 DOI: 10.1016/j.apsb.2017.09.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 12.2] [Reference Citation Analysis]
78 Gillentine MA, White JJ, Grochowski CM, Lupski JR, Schaaf CP, Calarge CA. CHRNA7 Deletions are Enriched in Risperidone-Treated Children and Adolescents. J Child Adolesc Psychopharmacol 2017;27:908-15. [PMID: 28817303 DOI: 10.1089/cap.2017.0068] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
79 Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. Journal of Pharmacological Sciences 2017;134:1-21. [DOI: 10.1016/j.jphs.2017.05.002] [Cited by in Crossref: 91] [Cited by in F6Publishing: 102] [Article Influence: 18.2] [Reference Citation Analysis]
80 Mcgregor AL, D'souza G, Kim D, Tingle MD. Varenicline improves motor and cognitive deficits and decreases depressive-like behaviour in late-stage YAC128 mice. Neuropharmacology 2017;116:233-46. [DOI: 10.1016/j.neuropharm.2016.12.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
81 Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017;10:77. [PMID: 28373833 DOI: 10.3389/fnmol.2017.00077] [Cited by in Crossref: 50] [Cited by in F6Publishing: 62] [Article Influence: 10.0] [Reference Citation Analysis]
82 Kaczanowska K, Camacho Hernandez GA, Bendiks L, Kohs L, Cornejo-bravo JM, Harel M, Finn MG, Taylor P. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins. J Am Chem Soc 2017;139:3676-84. [DOI: 10.1021/jacs.6b10746] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
83 Callahan PM, Bertrand D, Bertrand S, Plagenhoef MR, Terry AV Jr. Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals. Neuropharmacology 2017;117:422-33. [PMID: 28259598 DOI: 10.1016/j.neuropharm.2017.02.025] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
84 Renard PY, Jean L. Probing the cholinergic system to understand neurodegenerative diseases. Future Med Chem 2017;9:131-3. [PMID: 28097893 DOI: 10.4155/fmc-2016-0213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
85 Anan J, Hijioka M, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine: Effect of Nicotine on Cortical Hemorrhage in Mice. Journal of Neuroscience Research 2017;95:1838-49. [DOI: 10.1002/jnr.24016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
86 Lewis AS, van Schalkwyk GI, Bloch MH. Alpha-7 nicotinic agonists for cognitive deficits in neuropsychiatric disorders: A translational meta-analysis of rodent and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2017;75:45-53. [PMID: 28065843 DOI: 10.1016/j.pnpbp.2017.01.001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 10.0] [Reference Citation Analysis]
87 Stoiljkovic M, Kelley C, Nagy D, Hurst R, Hajós M. Activation of α7 nicotinic acetylcholine receptors facilitates long-term potentiation at the hippocampal-prefrontal cortex synapses in vivo. European Neuropsychopharmacology 2016;26:2018-23. [DOI: 10.1016/j.euroneuro.2016.11.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
88 Kasheverov IE, Chugunov AO, Kudryavtsev DS, Ivanov IA, Zhmak MN, Shelukhina IV, Spirova EN, Tabakmakher VM, Zelepuga EA, Efremov RG, Tsetlin VI. High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method. Sci Rep 2016;6:36848. [PMID: 27841338 DOI: 10.1038/srep36848] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
89 Pinheiro NM, Santana FP, Almeida RR, Guerreiro M, Martins MA, Caperuto LC, Câmara NO, Wensing LA, Prado VF, Tibério IF, Prado MA, Prado CM. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. FASEB J 2017;31:320-32. [PMID: 27729414 DOI: 10.1096/fj.201600431R] [Cited by in Crossref: 40] [Cited by in F6Publishing: 49] [Article Influence: 6.7] [Reference Citation Analysis]
90 Nikiforuk A, Potasiewicz A, Kos T, Popik P. The combination of memantine and galantamine improves cognition in rats: The synergistic role of the α7 nicotinic acetylcholine and NMDA receptors. Behavioural Brain Research 2016;313:214-8. [DOI: 10.1016/j.bbr.2016.07.023] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
91 Reyes-parada M, Iturriaga-vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opinion on Drug Discovery 2016;11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
92 Stoiljkovic M, Kelley C, Nagy D, Leventhal L, Hajós M. Selective activation of α7 nicotinic acetylcholine receptors augments hippocampal oscillations. Neuropharmacology 2016;110:102-8. [PMID: 27422408 DOI: 10.1016/j.neuropharm.2016.07.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
93 Udakis M, Wright VL, Wonnacott S, Bailey CP. Integration of inhibitory and excitatory effects of α7 nicotinic acetylcholine receptor activation in the prelimbic cortex regulates network activity and plasticity. Neuropharmacology 2016;105:618-29. [PMID: 26921769 DOI: 10.1016/j.neuropharm.2016.02.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
94 Horenstein NA, Papke RL, Kulkarni AR, Chaturbhuj GU, Stokes C, Manther K, Thakur GA. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation: SEPARATION OF DIRECT ALLOSTERIC ACTIVATION AND POSITIVE ALLOSTERIC MODULATION. J Biol Chem 2016;291:5049-67. [PMID: 26742843 DOI: 10.1074/jbc.M115.692392] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]