BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karnani MM, Venner A, Jensen LT, Fugger L, Burdakov D. Direct and indirect control of orexin/hypocretin neurons by glycine receptors. J Physiol 2011;589:639-51. [PMID: 21135047 DOI: 10.1113/jphysiol.2010.198457] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
Number Citing Articles
1 Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18. [PMID: 23508038 DOI: 10.3389/fendo.2013.00018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
2 Kawai N, Sakai N, Okuro M, Karakawa S, Tsuneyoshi Y, Kawasaki N, Takeda T, Bannai M, Nishino S. The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology 2015;40:1405-16. [PMID: 25533534 DOI: 10.1038/npp.2014.326] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
3 Manousopoulou A, Koutmani Y, Karaliota S, Woelk CH, Manolakos ES, Karalis K, Garbis SD. Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation. Nutr Diabetes 2016;6:e204. [PMID: 27110685 DOI: 10.1038/nutd.2016.10] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
4 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
5 Karnani MM, Apergis-Schoute J, Adamantidis A, Jensen LT, de Lecea L, Fugger L, Burdakov D. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 2011;72:616-29. [PMID: 22099463 DOI: 10.1016/j.neuron.2011.08.027] [Cited by in Crossref: 99] [Cited by in F6Publishing: 93] [Article Influence: 9.9] [Reference Citation Analysis]
6 Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res 2017;118:74-81. [PMID: 28526553 DOI: 10.1016/j.neures.2017.03.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
7 Lim JJ, Sequeira IR, Yip WCY, Lu LW, Barnett D, Cameron-Smith D, Poppitt SD. Postprandial glycine as a biomarker of satiety: A dose-rising randomised control trial of whey protein in overweight women. Appetite 2021;169:105871. [PMID: 34915106 DOI: 10.1016/j.appet.2021.105871] [Reference Citation Analysis]
8 Mohammadi S, Dolatshahi M, Zare-shahabadi A, Rahmani F. Untangling narcolepsy and diabetes: Pathomechanisms with eyes on therapeutic options. Brain Research 2019;1718:212-22. [DOI: 10.1016/j.brainres.2019.04.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
9 Fernandes MF, Sharma S, Hryhorczuk C, Auguste S, Fulton S. Nutritional controls of food reward. Can J Diabetes 2013;37:260-8. [PMID: 24070891 DOI: 10.1016/j.jcjd.2013.04.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
10 Yan-do R, Macdonald PE. Impaired “Glycine”-mia in Type 2 Diabetes and Potential Mechanisms Contributing to Glucose Homeostasis. Endocrinology 2017;158:1064-73. [DOI: 10.1210/en.2017-00148] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
11 RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016;15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
12 Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2013;304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Cited by in Crossref: 93] [Cited by in F6Publishing: 91] [Article Influence: 9.3] [Reference Citation Analysis]
13 Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021;145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Reference Citation Analysis]
14 Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev 2015;95:47-82. [PMID: 25540138 DOI: 10.1152/physrev.00007.2014] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 12.1] [Reference Citation Analysis]
15 Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2015;49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
16 Hruskova B, Trojanova J, Kulik A, Kralikova M, Pysanenko K, Bures Z, Syka J, Trussell LO, Turecek R. Differential distribution of glycine receptor subtypes at the rat calyx of Held synapse. J Neurosci 2012;32:17012-24. [PMID: 23175852 DOI: 10.1523/JNEUROSCI.1547-12.2012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
17 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Choe KY, Olson JE, Bourque CW. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci 2012;32:12518-27. [PMID: 22956842 DOI: 10.1523/JNEUROSCI.1380-12.2012] [Cited by in Crossref: 56] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
19 Hondo M, Furutani N, Yamasaki M, Watanabe M, Sakurai T. Orexin neurons receive glycinergic innervations. PLoS One 2011;6:e25076. [PMID: 21949857 DOI: 10.1371/journal.pone.0025076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
20 Aran A, Shors I, Lin L, Mignot E, Schimmel MS. CSF levels of hypocretin-1 (orexin-A) peak during early infancy in humans. Sleep 2012;35:187-91. [PMID: 22294808 DOI: 10.5665/sleep.1618] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
21 Venincasa MJ, Randlett O, Sumathipala SH, Bindernagel R, Stark MJ, Yan Q, Sloan SA, Buglo E, Meng QC, Engert F, Züchner S, Kelz MB, Syed S, Dallman JE. Elevated preoptic brain activity in zebrafish glial glycine transporter mutants is linked to lethargy-like behaviors and delayed emergence from anesthesia. Sci Rep 2021;11:3148. [PMID: 33542258 DOI: 10.1038/s41598-021-82342-w] [Reference Citation Analysis]