BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma S, Gundlach AL. Ascending control of arousal and motivation: role of nucleus incertus and its peptide neuromodulators in behavioural responses to stress. J Neuroendocrinol 2015;27:457-67. [PMID: 25612218 DOI: 10.1111/jne.12259] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Boehler NA, Fung SW, Hegazi S, Cheng AH, Cheng HM. Sox2 Ablation in the Suprachiasmatic Nucleus Perturbs Anxiety- and Depressive-like Behaviors. Neurol Int 2021;13:541-54. [PMID: 34842772 DOI: 10.3390/neurolint13040054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021;15:637922. [PMID: 33867946 DOI: 10.3389/fnana.2021.637922] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
3 Nasirova N, Quina LA, Morton G, Walker A, Turner EE. Mapping Cell Types and Efferent Pathways in the Ascending Relaxin-3 System of the Nucleus Incertus. eNeuro 2020;7:ENEURO. [PMID: 33055197 DOI: 10.1523/ENEURO.0272-20.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL, Blasiak A. RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J Neurosci 2020;40:5362-75. [PMID: 32532885 DOI: 10.1523/JNEUROSCI.2895-19.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
5 Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020;32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2020;8:1-10. [PMID: 31890981 DOI: 10.1016/j.ibror.2019.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
7 Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S, Gundlach AL. Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus 2019;29:905-20. [PMID: 30891856 DOI: 10.1002/hipo.23089] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
8 Lawther AJ, Flavell A, Ma S, Kent S, Lowry CA, Gundlach AL, Hale MW. Involvement of Serotonergic and Relaxin-3 Neuropeptide Systems in the Expression of Anxiety-like Behavior. Neuroscience 2018;390:88-103. [DOI: 10.1016/j.neuroscience.2018.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
9 Sabetghadam A, Grabowiecka-nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018;139:238-56. [DOI: 10.1016/j.neuropharm.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
10 Korotkova T, Ponomarenko A, Monaghan CK, Poulter SL, Cacucci F, Wills T, Hasselmo ME, Lever C. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience & Biobehavioral Reviews 2018;85:65-80. [DOI: 10.1016/j.neubiorev.2017.09.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 13.3] [Reference Citation Analysis]
11 Walker LC, Kastman HE, Krstew EV, Gundlach AL, Lawrence AJ. Central amygdala relaxin-3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats. Br J Pharmacol 2017;174:3359-69. [PMID: 28726252 DOI: 10.1111/bph.13955] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
12 Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018;85:21-33. [PMID: 28757457 DOI: 10.1016/j.neubiorev.2017.07.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
13 Zahm DS, Root DH. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav 2017;162:3-21. [PMID: 28647565 DOI: 10.1016/j.pbb.2017.06.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
14 Lima LB, Bueno D, Leite F, Souza S, Gonçalves L, Furigo IC, Donato J, Metzger M. Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei: L ima et al . J Comp Neurol 2017;525:2411-42. [DOI: 10.1002/cne.24217] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
15 Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
16 Molas S, DeGroot SR, Zhao-Shea R, Tapper AR. Anxiety and Nicotine Dependence: Emerging Role of the Habenulo-Interpeduncular Axis. Trends Pharmacol Sci 2017;38:169-80. [PMID: 27890353 DOI: 10.1016/j.tips.2016.11.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 8.7] [Reference Citation Analysis]
17 Walker LC, Lawrence AJ. CRF and the nucleus incertus: a node for integration of stress signals. Nat Rev Neurosci 2017;18:158-158. [DOI: 10.1038/nrn.2016.158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
18 Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2017;174:1061-76. [PMID: 27597467 DOI: 10.1111/bph.13564] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 4.5] [Reference Citation Analysis]
19 Kastman HE, Blasiak A, Walker L, Siwiec M, Krstew EV, Gundlach AL, Lawrence AJ. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology 2016;110:82-91. [PMID: 27395787 DOI: 10.1016/j.neuropharm.2016.07.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
20 Ma S, Allocca G, Ong-Pålsson EK, Singleton CE, Hawkes D, McDougall SJ, Williams SJ, Bathgate RA, Gundlach AL. Nucleus incertus promotes cortical desynchronization and behavioral arousal. Brain Struct Funct 2017;222:515-37. [PMID: 27206427 DOI: 10.1007/s00429-016-1230-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
21 Domonkos A, Nikitidou Ledri L, Laszlovszky T, Cserép C, Borhegyi Z, Papp E, Nyiri G, Freund TF, Varga V. Divergent in vivo activity of non-serotonergic and serotonergic VGluT3-neurones in the median raphe region. J Physiol 2016;594:3775-90. [PMID: 27028801 DOI: 10.1113/JP272036] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
22 Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016;10:36. [PMID: 27092060 DOI: 10.3389/fnana.2016.00036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
23 Lawther A, Clissold M, Ma S, Kent S, Lowry C, Gundlach A, Hale M. Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus. Neuroscience 2015;303:270-84. [DOI: 10.1016/j.neuroscience.2015.06.052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
24 Smith CM, Walker LL, Chua BE, McKinley MJ, Gundlach AL, Denton DA, Lawrence AJ. Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp Physiol 2015;100:1064-72. [PMID: 26147879 DOI: 10.1113/EP085349] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
25 Haidar M, Lam M, Chua BE, Smith CM, Gundlach AL. Sensitivity to Chronic Methamphetamine Administration and Withdrawal in Mice with Relaxin-3/RXFP3 Deficiency. Neurochem Res 2016;41:481-91. [PMID: 26023064 DOI: 10.1007/s11064-015-1621-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]