BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease. J Neurochem 2013;125:410-9. [PMID: 23373812 DOI: 10.1111/jnc.12190] [Cited by in Crossref: 76] [Cited by in F6Publishing: 76] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Nadal X, Del Río C, Casano S, Palomares B, Ferreiro-Vera C, Navarrete C, Sánchez-Carnerero C, Cantarero I, Bellido ML, Meyer S, Morello G, Appendino G, Muñoz E. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol 2017;174:4263-76. [PMID: 28853159 DOI: 10.1111/bph.14019] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
2 Serghides L, McDonald CR, Lu Z, Friedel M, Cui C, Ho KT, Mount HT, Sled JG, Kain KC. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria. PLoS Pathog 2014;10:e1003980. [PMID: 24603727 DOI: 10.1371/journal.ppat.1003980] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
3 Justin A, Mandal S, Prabitha P, Dhivya S, Yuvaraj S, Kabadi P, Sekhar SJ, Sandhya CH, Wadhwani AD, Divakar S, Bharathi JJ, Durai P, Prashantha Kumar BR. Rational Design, Synthesis, and In Vitro Neuroprotective Evaluation of Novel Glitazones for PGC-1α Activation via PPAR-γ: a New Therapeutic Strategy for Neurodegenerative Disorders. Neurotox Res 2020;37:508-24. [DOI: 10.1007/s12640-019-00132-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
4 Dash BP, Naumann M, Sterneckert J, Hermann A. Genome Wide Analysis Points towards Subtype-Specific Diseases in Different Genetic Forms of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020;21:E6938. [PMID: 32967368 DOI: 10.3390/ijms21186938] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mansour RM, El Sayed NS, Ahmed MAE, El-Sahar AE. Addressing Peroxisome Proliferator-Activated Receptor-gamma in 3-Nitropropionic Acid-Induced Striatal Neurotoxicity in Rats. Mol Neurobiol 2022. [PMID: 35553009 DOI: 10.1007/s12035-022-02856-w] [Reference Citation Analysis]
6 Dickey AS, La Spada AR. Therapy development in Huntington disease: From current strategies to emerging opportunities. Am J Med Genet A 2018;176:842-61. [PMID: 29218782 DOI: 10.1002/ajmg.a.38494] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
7 Yoo DY, Kim W, Kim DW, Nam SM, Jung HY, Kim JW, Lee CH, Choi JH, Won MH, Yoon YS, Hwang IK. Cell proliferation and neuroblast differentiation in the dentate gyrus of high-fat diet-fed mice are increased after rosiglitazone treatment. J Vet Sci 2014;15:27-33. [PMID: 24136217 DOI: 10.4142/jvs.2014.15.1.27] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
8 Díaz-Alonso J, Paraíso-Luna J, Navarrete C, Del Río C, Cantarero I, Palomares B, Aguareles J, Fernández-Ruiz J, Bellido ML, Pollastro F, Appendino G, Calzado MA, Galve-Roperh I, Muñoz E. VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington's disease. Sci Rep 2016;6:29789. [PMID: 27430371 DOI: 10.1038/srep29789] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
9 Karelina K, Weil ZM. Neuroenergetics of traumatic brain injury. Concussion 2016;1:CNC9. [PMID: 30202553 DOI: 10.2217/cnc.15.9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
10 Wang G, Liu L, Zhang Y, Han D, Lu J, Xu J, Xie X, Wu Y, Zhang D, Ke R, Li S, Zhu Y, Feng W, Li M. Activation of PPARγ attenuates LPS-induced acute lung injury by inhibition of HMGB1-RAGE levels. European Journal of Pharmacology 2014;726:27-32. [DOI: 10.1016/j.ejphar.2014.01.030] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 4.9] [Reference Citation Analysis]
11 Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, Bila R, Mucavele H, Mayor A, Bassat Q, Kain KC. Safety and tolerability of adjunctive rosiglitazone treatment for children with uncomplicated malaria. Malar J 2017;16:215. [PMID: 28535809 DOI: 10.1186/s12936-017-1858-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
12 Dubinsky JM. Towards an Understanding of Energy Impairment in Huntington's Disease Brain. J Huntingtons Dis 2017;6:267-302. [PMID: 29125492 DOI: 10.3233/JHD-170264] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
13 Tseng HL, Yang SC, Yang SH, Shieh KR. Hepatic circadian-clock system altered by insulin resistance, diabetes and insulin sensitizer in mice. PLoS One 2015;10:e0120380. [PMID: 25799429 DOI: 10.1371/journal.pone.0120380] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
14 Sanjay, Sharma A, Lee HJ. Role of Phytoconstituents as PPAR Agonists: Implications for Neurodegenerative Disorders. Biomedicines 2021;9:1914. [PMID: 34944727 DOI: 10.3390/biomedicines9121914] [Reference Citation Analysis]
15 Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacological Research 2019;150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
16 Kumar A, Vaish M, Ratan RR. Transcriptional dysregulation in Huntington's disease: a failure of adaptive transcriptional homeostasis. Drug Discov Today 2014;19:956-62. [PMID: 24662036 DOI: 10.1016/j.drudis.2014.03.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
17 Dickey AS, Pineda VV, Tsunemi T, Liu PP, Miranda HC, Gilmore-Hall SK, Lomas N, Sampat KR, Buttgereit A, Torres MJ, Flores AL, Arreola M, Arbez N, Akimov SS, Gaasterland T, Lazarowski ER, Ross CA, Yeo GW, Sopher BL, Magnuson GK, Pinkerton AB, Masliah E, La Spada AR. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically. Nat Med 2016;22:37-45. [PMID: 26642438 DOI: 10.1038/nm.4003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 7.7] [Reference Citation Analysis]
18 P P, Justin A, Ananda Kumar TD, Chinaswamy M, Kumar BRP. Glitazones Activate PGC-1α Signaling via PPAR-γ: A Promising Strategy for Antiparkinsonism Therapeutics. ACS Chem Neurosci 2021;12:2261-72. [PMID: 34125534 DOI: 10.1021/acschemneuro.1c00085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Hang H, Wang LK, Ren SY, Song AJ, Wu GF. Activating PPARγ Increases NQO1 and γ-GCS Expression via Nrf2 in Thrombin-activated Microglia. Curr Med Sci 2020;40:55-62. [PMID: 32166665 DOI: 10.1007/s11596-020-2146-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Vodicka P, Mo S, Tousley A, Green KM, Sapp E, Iuliano M, Sadri-Vakili G, Shaffer SA, Aronin N, DiFiglia M, Kegel-Gleason KB. Mass Spectrometry Analysis of Wild-Type and Knock-in Q140/Q140 Huntington's Disease Mouse Brains Reveals Changes in Glycerophospholipids Including Alterations in Phosphatidic Acid and Lyso-Phosphatidic Acid. J Huntingtons Dis 2015;4:187-201. [PMID: 26397899 DOI: 10.3233/JHD-150149] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
21 Mallick S, Marshall PA, Wagner CE, Heck MC, Sabir ZL, Sabir MS, Dussik CM, Grozic A, Kaneko I, Jurutka PW. Evaluating Novel RXR Agonists That Induce ApoE and Tyrosine Hydroxylase in Cultured Human Glioblastoma Cells. ACS Chem Neurosci 2021;12:857-71. [PMID: 33570383 DOI: 10.1021/acschemneuro.0c00707] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 St-Cyr S, Smith AR, Davidson BL. Temporal Phenotypic Changes in Huntington's Disease Models for Preclinical Studies. J Huntingtons Dis 2022;11:35-57. [PMID: 35213386 DOI: 10.3233/JHD-210515] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Berhe DF, Gebre AK, Assefa BT. Orexins role in neurodegenerative diseases: From pathogenesis to treatment. Pharmacol Biochem Behav 2020;194:172929. [PMID: 32315694 DOI: 10.1016/j.pbb.2020.172929] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
24 Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014;72 Pt A:104-16. [PMID: 24874548 DOI: 10.1016/j.nbd.2014.05.019] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 7.4] [Reference Citation Analysis]
25 d'Angelo M, Castelli V, Catanesi M, Antonosante A, Dominguez-Benot R, Ippoliti R, Benedetti E, Cimini A. PPARγ and Cognitive Performance. Int J Mol Sci 2019;20:E5068. [PMID: 31614739 DOI: 10.3390/ijms20205068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
26 Lima LCF, Saliba SW, Andrade JMO, Cunha ML, Cassini-Vieira P, Feltenberger JD, Barcelos LS, Guimarães ALS, de-Paula AMB, de Oliveira ACP, Santos SHS. Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice. Mol Neurobiol 2017;54:3465-75. [PMID: 27181590 DOI: 10.1007/s12035-016-9927-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
27 Lauterbach EC. Neuroprotective effects of psychotropic drugs in Huntington's disease. Int J Mol Sci 2013;14:22558-603. [PMID: 24248060 DOI: 10.3390/ijms141122558] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.8] [Reference Citation Analysis]
28 Kumar N, Sharma N, Khera R, Gupta R, Mehan S. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain. Metab Brain Dis 2021;36:911-25. [PMID: 33635478 DOI: 10.1007/s11011-021-00691-x] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Abdel Rasheed NO, Ibrahim WW. Telmisartan neuroprotective effects in 3-nitropropionic acid Huntington's disease model in rats: Cross talk between PPAR-γ and PI3K/Akt/GSK-3β pathway. Life Sciences 2022;297:120480. [DOI: 10.1016/j.lfs.2022.120480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Chistyakov DV, Azbukina NV, Lopachev AV, Kulichenkova KN, Astakhova AA, Sergeeva MG. Rosiglitazone as a Modulator of TLR4 and TLR3 Signaling Pathways in Rat Primary Neurons and Astrocytes. Int J Mol Sci 2018;19:E113. [PMID: 29301276 DOI: 10.3390/ijms19010113] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
31 Clarke P, Leser JS, Tyler KL. Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced Central Nervous System Disease. J Virol 2021;95:e0083521. [PMID: 34190599 DOI: 10.1128/JVI.00835-21] [Reference Citation Analysis]
32 Cardinale A, de Stefano MC, Mollinari C, Racaniello M, Garaci E, Merlo D. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response. Neurochem Res 2015;40:59-69. [PMID: 25366464 DOI: 10.1007/s11064-014-1465-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
33 Szalárdy L, Zádori D, Klivényi P, Toldi J, Vécsei L. Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. Oxid Med Cell Longev 2015;2015:498401. [PMID: 26301042 DOI: 10.1155/2015/498401] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
34 Ross CA, Kronenbuerger M, Duan W, Margolis RL. Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. Huntington Disease. Elsevier; 2017. pp. 15-28. [DOI: 10.1016/b978-0-12-801893-4.00002-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
35 Wright DJ, Renoir T, Gray LJ, Hannan AJ. Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets. In: Beart P, Robinson M, Rattray M, Maragakis NJ, editors. Neurodegenerative Diseases. Cham: Springer International Publishing; 2017. pp. 93-128. [DOI: 10.1007/978-3-319-57193-5_4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
36 Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JP, Conrad M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2017;13:91-8. [PMID: 27842070 DOI: 10.1038/nchembio.2239] [Cited by in Crossref: 613] [Cited by in F6Publishing: 614] [Article Influence: 102.2] [Reference Citation Analysis]
37 Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019;9:E238. [PMID: 31540439 DOI: 10.3390/brainsci9090238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
38 Bahrami F, Asgari A, Hosseinmardi N, Janahmadi M. Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons. Iran J Pharm Res 2019;18:1403-18. [PMID: 32641950 DOI: 10.22037/ijpr.2019.1100783] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Lv J, Jiang S, Yang Z, Hu W, Wang Z, Li T, Yang Y. PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018;44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 11.5] [Reference Citation Analysis]
40 McMeekin LJ, Fox SN, Boas SM, Cowell RM. Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021;10:352. [PMID: 33572179 DOI: 10.3390/cells10020352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington's disease. Neurodegener Dis Manag 2020;10:243-55. [PMID: 32746707 DOI: 10.2217/nmt-2019-0033] [Reference Citation Analysis]
42 Ghasemi M, Mayasi Y, Hannoun A, Eslami SM, Carandang R. Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018;376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
43 Ha J, Kang E, Seo J, Cho S. Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int J Mol Sci 2019;20:E6157. [PMID: 31817617 DOI: 10.3390/ijms20246157] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
44 Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018;11:153. [PMID: 29867345 DOI: 10.3389/fnmol.2018.00153] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
45 Ghosh R, Tabrizi SJ. Clinical Features of Huntington's Disease. Adv Exp Med Biol 2018;1049:1-28. [PMID: 29427096 DOI: 10.1007/978-3-319-71779-1_1] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
46 Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 2021;219:107705. [PMID: 33039420 DOI: 10.1016/j.pharmthera.2020.107705] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
47 She DT, Jo DG, Arumugam TV. Emerging Roles of Sirtuins in Ischemic Stroke. Transl Stroke Res 2017. [PMID: 28656393 DOI: 10.1007/s12975-017-0544-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
48 Chandra A, Sharma A, Calingasan NY, White JM, Shurubor Y, Yang XW, Beal MF, Johri A. Enhanced mitochondrial biogenesis ameliorates disease phenotype in a full-length mouse model of Huntington's disease. Hum Mol Genet 2016;25:2269-82. [PMID: 27008868 DOI: 10.1093/hmg/ddw095] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
49 Wu B, Jiang M, Peng Q, Li G, Hou Z, Milne GL, Mori S, Alonso R, Geisler JG, Duan W. 2,4 DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington's disease. Exp Neurol 2017;293:83-90. [PMID: 28359739 DOI: 10.1016/j.expneurol.2017.03.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
50 Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 2016;6:27618. [PMID: 27283430 DOI: 10.1038/srep27618] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 17.2] [Reference Citation Analysis]
51 Zhang LY, Liu XY, Su AC, Hu YY, Zhang JG, Xian XH, Li WB, Zhang M. Klotho Upregulation via PPARγ Contributes to the Induction of Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning in Rats. Cell Mol Neurobiol 2022. [PMID: 35900650 DOI: 10.1007/s10571-022-01255-y] [Reference Citation Analysis]
52 Zuo Y, Huang L, Enkhjargal B, Xu W, Umut O, Travis ZD, Zhang G, Tang J, Liu F, Zhang JH. Activation of retinoid X receptor by bexarotene attenuates neuroinflammation via PPARγ/SIRT6/FoxO3a pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 2019;16:47. [PMID: 30791908 DOI: 10.1186/s12974-019-1432-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
53 Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016;139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
54 Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol 2019;59:237-61. [PMID: 30208281 DOI: 10.1146/annurev-pharmtox-010818-021807] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
55 Katsuno M, Watanabe H, Yamamoto M, Sobue G. Potential therapeutic targets in polyglutamine-mediated diseases. Expert Rev Neurother 2014;14:1215-28. [PMID: 25190502 DOI: 10.1586/14737175.2014.956727] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
56 Di Cristo F, Finicelli M, Digilio FA, Paladino S, Valentino A, Scialò F, D'Apolito M, Saturnino C, Galderisi U, Giordano A, Melone MAB, Peluso G. Meldonium improves Huntington's disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor γ coactivator 1α expression. J Cell Physiol 2019;234:9233-46. [PMID: 30362565 DOI: 10.1002/jcp.27602] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
57 Sonego AB, Prado DS, Vale GT, Sepulveda-Diaz JE, Cunha TM, Tirapelli CR, Del Bel EA, Raisman-Vozari R, Guimarães FS. Cannabidiol prevents haloperidol-induced vacuos chewing movements and inflammatory changes in mice via PPARγ receptors. Brain Behav Immun 2018;74:241-51. [PMID: 30217539 DOI: 10.1016/j.bbi.2018.09.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
58 Mimura T, Kaji Y, Noma H, Funatsu H, Okamoto S. The role of SIRT1 in ocular aging. Exp Eye Res 2013;116:17-26. [PMID: 23892278 DOI: 10.1016/j.exer.2013.07.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 5.4] [Reference Citation Analysis]
59 Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017;92:2046-69. [PMID: 28220655 DOI: 10.1111/brv.12320] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
60 Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016;100:153-63. [PMID: 27352979 DOI: 10.1016/j.freeradbiomed.2016.06.023] [Cited by in Crossref: 96] [Cited by in F6Publishing: 89] [Article Influence: 16.0] [Reference Citation Analysis]
61 Valdeolivas S, Navarrete C, Cantarero I, Bellido ML, Muñoz E, Sagredo O. Neuroprotective properties of cannabigerol in Huntington's disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics 2015;12:185-99. [PMID: 25252936 DOI: 10.1007/s13311-014-0304-z] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 8.3] [Reference Citation Analysis]
62 Duan W, Jiang M, Jin J. Metabolism in HD: still a relevant mechanism? Mov Disord 2014;29:1366-74. [PMID: 25124273 DOI: 10.1002/mds.25992] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
63 Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2017;483:1166-77. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Cited by in Crossref: 92] [Cited by in F6Publishing: 88] [Article Influence: 15.3] [Reference Citation Analysis]
64 Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018;34:843-60. [PMID: 30122551 DOI: 10.1016/j.pt.2018.07.011] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
65 Roy A, Jana M, Kundu M, Corbett GT, Rangaswamy SB, Mishra RK, Luan CH, Gonzalez FJ, Pahan K. HMG-CoA Reductase Inhibitors Bind to PPARα to Upregulate Neurotrophin Expression in the Brain and Improve Memory in Mice. Cell Metab 2015;22:253-65. [PMID: 26118928 DOI: 10.1016/j.cmet.2015.05.022] [Cited by in Crossref: 88] [Cited by in F6Publishing: 88] [Article Influence: 12.6] [Reference Citation Analysis]
66 Alexander SP. Common Receptors for Endocannabinoid-Like Mediators and Plant Cannabinoids. The Endocannabinoidome. Elsevier; 2015. pp. 153-75. [DOI: 10.1016/b978-0-12-420126-2.00010-9] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
67 Pottabathini R, Kumar A, Bhatnagar A, Garg S, Ekavali E. Ameliorative potential of pioglitazone and ceftriaxone alone and in combination in rat model of neuropathic pain: Targeting PPARγ and GLT-1 pathways. Pharmacol Rep 2016;68:85-94. [PMID: 26721358 DOI: 10.1016/j.pharep.2015.06.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
68 Favero G, Rezzani R, Rodella LF. Sirtuin 6 nuclear localization at cortical brain level of young diabetic mice: an immunohistochemical study. Acta Histochem 2014;116:272-7. [PMID: 24063863 DOI: 10.1016/j.acthis.2013.08.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
69 Quan H, Koltai E, Suzuki K, Aguiar AS Jr, Pinho R, Boldogh I, Berkes I, Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020;1866:165778. [PMID: 32222542 DOI: 10.1016/j.bbadis.2020.165778] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
70 Yuan L, Liu J, Dong R, Zhu J, Tao C, Zheng R, Zhu S. 14,15-epoxyeicosatrienoic acid promotes production of brain derived neurotrophic factor from astrocytes and exerts neuroprotective effects during ischaemic injury. Neuropathol Appl Neurobiol 2016;42:607-20. [PMID: 26526810 DOI: 10.1111/nan.12291] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
71 Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington's disease: what's in the pipeline? Mov Disord 2014;29:1434-45. [PMID: 25155142 DOI: 10.1002/mds.26007] [Cited by in Crossref: 101] [Cited by in F6Publishing: 94] [Article Influence: 12.6] [Reference Citation Analysis]
72 Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer’s Disease. Biomedicines 2022;10:1236. [DOI: 10.3390/biomedicines10061236] [Reference Citation Analysis]
73 Komen JC, Thorburn DR. Turn up the power - pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 2014;171:1818-36. [PMID: 24102298 DOI: 10.1111/bph.12413] [Cited by in Crossref: 83] [Cited by in F6Publishing: 79] [Article Influence: 10.4] [Reference Citation Analysis]
74 Ghosh R, Tabrizi SJ. Huntington disease. Neurogenetics, Part I. Elsevier; 2018. pp. 255-78. [DOI: 10.1016/b978-0-444-63233-3.00017-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
75 Mishra J, Chaudhary T, Kumar A. Rosiglitazone synergizes the neuroprotective effects of valproic acid against quinolinic acid-induced neurotoxicity in rats: targeting PPARγ and HDAC pathways. Neurotox Res 2014;26:130-51. [PMID: 24566814 DOI: 10.1007/s12640-014-9458-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
76 Uppalapati D, Das NR, Gangwal RP, Damre MV, Sangamwar AT, Sharma SS. Neuroprotective Potential of Peroxisome Proliferator Activated Receptor- α Agonist in Cognitive Impairment in Parkinson's Disease: Behavioral, Biochemical, and PBPK Profile. PPAR Res 2014;2014:753587. [PMID: 24693279 DOI: 10.1155/2014/753587] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
77 Quintão NLM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Front Neurosci 2019;13:907. [PMID: 31555078 DOI: 10.3389/fnins.2019.00907] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
78 Smatlikova P, Juhas S, Juhasova J, Suchy T, Hubalek Kalbacova M, Ellederova Z, Motlik J, Klima J. Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Pig Transgenic Model Expressing Human Mutant Huntingtin. J Huntingtons Dis 2019;8:33-51. [PMID: 30584151 DOI: 10.3233/JHD-180303] [Reference Citation Analysis]
79 Liot G, Valette J, Pépin J, Flament J, Brouillet E. Energy defects in Huntington's disease: Why “in vivo” evidence matters. Biochemical and Biophysical Research Communications 2017;483:1084-95. [DOI: 10.1016/j.bbrc.2016.09.065] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
80 Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2015;22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
81 Aguareles J, Paraíso-Luna J, Palomares B, Bajo-Grañeras R, Navarrete C, Ruiz-Calvo A, García-Rincón D, García-Taboada E, Guzmán M, Muñoz E, Galve-Roperh I. Oral administration of the cannabigerol derivative VCE-003.2 promotes subventricular zone neurogenesis and protects against mutant huntingtin-induced neurodegeneration. Transl Neurodegener 2019;8:9. [PMID: 30899454 DOI: 10.1186/s40035-019-0148-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
82 Rani Panigrahy S, Pradhan S, Sekhar Maharana C. Amelioration of Oxidative Stress and Neuroinflammation by Saroglitazar, A Dual PPARα/γ Agonist in MES Induced Epileptic Rats. Biomed Pharmacol J 2019;12:1985-91. [DOI: 10.13005/bpj/1830] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]