BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Morganstern I, Chang GQ, Barson JR, Ye Z, Karatayev O, Leibowitz SF. Differential effects of acute and chronic ethanol exposure on orexin expression in the perifornical lateral hypothalamus. Alcohol Clin Exp Res 2010;34:886-96. [PMID: 20331576 DOI: 10.1111/j.1530-0277.2010.01161.x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Carvajal F, Alcaraz-iborra M, Lerma-cabrera JM, Valor LM, de la Fuente L, Sanchez-amate MDC, Cubero I. Orexin receptor 1 signaling contributes to ethanol binge-like drinking: Pharmacological and molecular evidence. Behavioural Brain Research 2015;287:230-7. [DOI: 10.1016/j.bbr.2015.03.046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
2 Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:321-9. [PMID: 25689818 DOI: 10.1016/j.pnpbp.2015.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
3 Szulc M, Mikolajczak PL, Geppert B, Wachowiak R, Dyr W, Bobkiewicz-kozlowska T. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats: Ethanol affects ghrelin level. Addiction Biology 2013;18:689-701. [DOI: 10.1111/adb.12025] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
4 Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016;3:11. [PMID: 27148536 DOI: 10.3389/fnut.2016.00011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
5 Koob GF. Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacol Rev 2021;73:163-201. [PMID: 33318153 DOI: 10.1124/pharmrev.120.000083] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
6 Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018;11:220. [PMID: 30002617 DOI: 10.3389/fnmol.2018.00220] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
7 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
8 Barson JR, Ho HT, Leibowitz SF. Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: role of orexin receptor 2. Addict Biol 2015;20:469-81. [PMID: 24712379 DOI: 10.1111/adb.12139] [Cited by in Crossref: 77] [Cited by in F6Publishing: 78] [Article Influence: 9.6] [Reference Citation Analysis]
9 Lopez MF, Moorman DE, Aston-Jones G, Becker HC. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 2016;1636:74-80. [PMID: 26851547 DOI: 10.1016/j.brainres.2016.01.049] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
10 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kim AK, Brown RM, Lawrence AJ. The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Front Behav Neurosci 2012;6:78. [PMID: 23189046 DOI: 10.3389/fnbeh.2012.00078] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
12 Baker JA, Li J, Zhou D, Yang M, Cook MN, Jones BC, Mulligan MK, Hamre KM, Lu L. Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice. Alcohol 2017;58:139-51. [PMID: 28027852 DOI: 10.1016/j.alcohol.2016.08.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
13 Gyetvai B, Simonyi A, Oros M, Saito M, Smiley J, Vadász C. mGluR7 genetics and alcohol: intersection yields clues for addiction. Neurochem Res 2011;36:1087-100. [PMID: 21448595 DOI: 10.1007/s11064-011-0452-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
14 Anderson RI, Becker HC, Adams BL, Jesudason CD, Rorick-Kehn LM. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci 2014;8:33. [PMID: 24616657 DOI: 10.3389/fnins.2014.00033] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
15 Huang M, Chen C, Chen L, Chang H, Chen C, Lin S, Xu K. Chronic ketamine abuse is associated with orexin-A reduction and ACTH elevation. Psychopharmacology 2020;237:45-53. [DOI: 10.1007/s00213-019-05342-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
16 Gass JT, Olive MF. Neurochemical and neurostructural plasticity in alcoholism. ACS Chem Neurosci 2012;3:494-504. [PMID: 22896799 DOI: 10.1021/cn300013p] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
17 Chang GQ, Karatayev O, Leibowitz SF. Prenatal exposure to nicotine stimulates neurogenesis of orexigenic peptide-expressing neurons in hypothalamus and amygdala. J Neurosci 2013;33:13600-11. [PMID: 23966683 DOI: 10.1523/JNEUROSCI.5835-12.2013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
18 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Glutamatergic input to the lateral hypothalamus stimulates ethanol intake: role of orexin and melanin-concentrating hormone. Alcohol Clin Exp Res 2013;37:123-31. [PMID: 22823322 DOI: 10.1111/j.1530-0277.2012.01854.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
19 Morales-mulia M. Intra-accumbal orexin-1 receptor inhibition prevents the anxiolytic-like effect of ethanol and leads to increases in orexin-A content and receptor expression. Pharmacology Biochemistry and Behavior 2019;185:172761. [DOI: 10.1016/j.pbb.2019.172761] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Chen YW, Morganstern I, Barson JR, Hoebel BG, Leibowitz SF. Differential role of D1 and D2 receptors in the perifornical lateral hypothalamus in controlling ethanol drinking and food intake: possible interaction with local orexin neurons. Alcohol Clin Exp Res 2014;38:777-86. [PMID: 24236888 DOI: 10.1111/acer.12313] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
21 Loureiro SO, Heimfarth L, Reis K, Wild L, Andrade C, Guma FT, Gonçalves CA, Pessoa-Pureur R. Acute ethanol exposure disrupts actin cytoskeleton and generates reactive oxygen species in c6 cells. Toxicol In Vitro 2011;25:28-36. [PMID: 20837132 DOI: 10.1016/j.tiv.2010.09.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
22 Jupp B, Krivdic B, Krstew E, Lawrence AJ. The orexin1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Research 2011;1391:54-9. [DOI: 10.1016/j.brainres.2011.03.045] [Cited by in Crossref: 92] [Cited by in F6Publishing: 93] [Article Influence: 8.4] [Reference Citation Analysis]
23 Barson JR, Fagan SE, Chang GQ, Leibowitz SF. Neurochemical heterogeneity of rats predicted by different measures to be high ethanol consumers. Alcohol Clin Exp Res 2013;37 Suppl 1:E141-51. [PMID: 22725682 DOI: 10.1111/j.1530-0277.2012.01858.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
24 Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neuroscience & Biobehavioral Reviews 2020;110:133-49. [DOI: 10.1016/j.neubiorev.2018.06.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
25 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Reference Citation Analysis]
26 Barson JR, Poon K, Ho HT, Alam MI, Sanzalone L, Leibowitz SF. Substance P in the anterior thalamic paraventricular nucleus: promotion of ethanol drinking in response to orexin from the hypothalamus. Addict Biol 2017;22:58-69. [PMID: 26223289 DOI: 10.1111/adb.12288] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
27 Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012;53:35-58. [PMID: 23520598 DOI: 10.1093/ilar.53.1.35] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
28 Sterling ME, Karatayev O, Chang GQ, Algava DB, Leibowitz SF. Model of voluntary ethanol intake in zebrafish: effect on behavior and hypothalamic orexigenic peptides. Behav Brain Res 2015;278:29-39. [PMID: 25257106 DOI: 10.1016/j.bbr.2014.09.024] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
29 Sharma R, Sharma A, Sahota P, Thakkar MM. Orexin gene expression is downregulated in alcohol dependent rats during acute alcohol withdrawal. Neurosci Lett 2020;739:135347. [PMID: 33011195 DOI: 10.1016/j.neulet.2020.135347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Opioids in the perifornical lateral hypothalamus suppress ethanol drinking. Alcohol 2013;47:31-8. [PMID: 23199698 DOI: 10.1016/j.alcohol.2012.11.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
31 Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res 2013;1526:102-22. [PMID: 23830852 DOI: 10.1016/j.brainres.2013.06.035] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
32 Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav 2010;101:428-37. [PMID: 20670637 DOI: 10.1016/j.physbeh.2010.07.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
33 Karatayev O, Barson JR, Carr AJ, Baylan J, Chen YW, Leibowitz SF. Predictors of ethanol consumption in adult Sprague-Dawley rats: relation to hypothalamic peptides that stimulate ethanol intake. Alcohol 2010;44:323-34. [PMID: 20692550 DOI: 10.1016/j.alcohol.2010.05.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
34 Eiler WJ 2nd, Džemidžić M, Case KR, Soeurt CM, Armstrong CL, Mattes RD, O'Connor SJ, Harezlak J, Acton AJ, Considine RV, Kareken DA. The apéritif effect: Alcohol's effects on the brain's response to food aromas in women. Obesity (Silver Spring) 2015;23:1386-93. [PMID: 26110891 DOI: 10.1002/oby.21109] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
35 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Hypothalamic peptides controlling alcohol intake: differential effects on microstructure of drinking bouts. Alcohol 2014;48:657-64. [PMID: 25241055 DOI: 10.1016/j.alcohol.2014.08.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
36 Walker LC, Lawrence AJ. The Role of Orexins/Hypocretins in Alcohol Use and Abuse. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 221-46. [DOI: 10.1007/7854_2016_55] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
37 Olney JJ, Navarro M, Thiele TE. Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol Clin Exp Res 2015;39:21-9. [PMID: 25623402 DOI: 10.1111/acer.12591] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
38 Barson JR, Morganstern I, Leibowitz SF. Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol. Physiol Behav 2011;104:128-37. [PMID: 21549731 DOI: 10.1016/j.physbeh.2011.04.054] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 4.0] [Reference Citation Analysis]
39 Plaza-Zabala A, Maldonado R, Berrendero F. The hypocretin/orexin system: implications for drug reward and relapse. Mol Neurobiol 2012;45:424-39. [PMID: 22430644 DOI: 10.1007/s12035-012-8255-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
40 Chang GQ, Karatayev O, Leibowitz SF. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring. Neuroscience 2015;310:163-75. [PMID: 26365610 DOI: 10.1016/j.neuroscience.2015.09.020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
41 Morganstern I, Barson JR, Leibowitz SF. Regulation of drug and palatable food overconsumption by similar peptide systems. Curr Drug Abuse Rev 2011;4:163-73. [PMID: 21999690 DOI: 10.2174/1874473711104030163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
42 Amodeo LR, Wills DN, Sanchez-Alavez M, Ehlers CL. Effects of an Orexin-2 Receptor Antagonist on Sleep and Event-Related Oscillations in Female Rats Exposed to Chronic Intermittent Ethanol During Adolescence. Alcohol Clin Exp Res 2020;44:1378-88. [PMID: 32424852 DOI: 10.1111/acer.14361] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Alcaraz-iborra M, Carvajal F, Lerma-cabrera JM, Valor LM, Cubero I. Binge-like consumption of caloric and non-caloric palatable substances in ad libitum-fed C57BL/6J mice: Pharmacological and molecular evidence of orexin involvement. Behavioural Brain Research 2014;272:93-9. [DOI: 10.1016/j.bbr.2014.06.049] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
44 Flores Á, Maldonado R, Berrendero F. The hypocretin/orexin receptor-1 as a novel target to modulate cannabinoid reward. Biol Psychiatry 2014;75:499-507. [PMID: 23896204 DOI: 10.1016/j.biopsych.2013.06.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
45 James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
46 Olney JJ, Navarro M, Thiele TE. The Role of Orexin Signaling in the Ventral Tegmental Area and Central Amygdala in Modulating Binge-Like Ethanol Drinking Behavior. Alcohol Clin Exp Res 2017;41:551-61. [PMID: 28097729 DOI: 10.1111/acer.13336] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
47 Ziółkowski M, Czarnecki D, Budzyński J, Rosińska Z, Żekanowska E, Góralczyk B. Orexin in Patients with Alcohol Dependence Treated for Relapse Prevention: A Pilot Study. Alcohol Alcohol 2016;51:416-21. [PMID: 26597795 DOI: 10.1093/alcalc/agv129] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
48 Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2015;49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
49 Wei J, Yao L, Yang L, Zhao W, Shi S, Cai Q, Chen D, Li W, Wang Q. Alteration of glutamate/GABA balance during acute alcohol intoxication in rats: Effect of Xingnaojing injection. Journal of Ethnopharmacology 2015;166:333-9. [DOI: 10.1016/j.jep.2015.03.038] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
50 Chang GQ, Karatayev O, Liang SC, Barson JR, Leibowitz SF. Prenatal ethanol exposure stimulates neurogenesis in hypothalamic and limbic peptide systems: possible mechanism for offspring ethanol overconsumption. Neuroscience 2012;222:417-28. [PMID: 22742906 DOI: 10.1016/j.neuroscience.2012.05.066] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
51 Amodeo LR, Liu W, Wills DN, Vetreno RP, Crews FT, Ehlers CL. Adolescent alcohol exposure increases orexin-A/hypocretin-1 in the anterior hypothalamus. Alcohol 2020;88:65-72. [PMID: 32619610 DOI: 10.1016/j.alcohol.2020.06.003] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
53 Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020;14:599710. [PMID: 33240054 DOI: 10.3389/fnint.2020.599710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
54 Sterling ME, Chang GQ, Karatayev O, Chang SY, Leibowitz SF. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides. Behav Brain Res 2016;304:125-38. [PMID: 26778786 DOI: 10.1016/j.bbr.2016.01.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
55 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]