BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dougalis AG, Matthews GAC, Bishop MW, Brischoux F, Kobayashi K, Ungless MA. Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. Eur J Neurosci 2012;36:3322-32. [PMID: 22925150 DOI: 10.1111/j.1460-9568.2012.08255.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021;9:713762. [PMID: 34616730 DOI: 10.3389/fcell.2021.713762] [Reference Citation Analysis]
2 Johnson KA, Lovinger DM. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? Front Cell Neurosci 2016;10:264. [PMID: 27891077 DOI: 10.3389/fncel.2016.00264] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
3 Li C, McCall NM, Lopez AJ, Kash TL. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons. Alcohol 2013;47:279-87. [PMID: 23597415 DOI: 10.1016/j.alcohol.2013.02.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
4 Dougalis AG, Matthews GAC, Liss B, Ungless MA. Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. J Comput Neurosci 2017;42:275-305. [PMID: 28367595 DOI: 10.1007/s10827-017-0641-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
5 Paul EJ, Tossell K, Ungless MA. Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. Eur J Neurosci 2019;50:3732-49. [PMID: 31374129 DOI: 10.1111/ejn.14534] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
6 Haddar M, Uno K, Hamatani K, Muramatsu SI, Nitta A. Regulatory system of mGluR group II in the nucleus accumbens for methamphetamine-induced dopamine increase by the medial prefrontal cortex. Neuropsychopharmacol Rep 2019;39:209-16. [PMID: 31283871 DOI: 10.1002/npr2.12068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
7 Poulin JF, Gaertner Z, Moreno-Ramos OA, Awatramani R. Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches. Trends Neurosci 2020;43:155-69. [PMID: 32101709 DOI: 10.1016/j.tins.2020.01.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 18.5] [Reference Citation Analysis]
8 Kramer DJ, Aisenberg EE, Kosillo P, Friedmann D, Stafford DA, Lee AY, Luo L, Hockemeyer D, Ngai J, Bateup HS. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Rep 2021;35:109123. [PMID: 33979604 DOI: 10.1016/j.celrep.2021.109123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, McKlveen JM, Pleil KE, Kash TL. Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain. Neuropsychopharmacology 2016;41:2122-32. [PMID: 26792442 DOI: 10.1038/npp.2016.12] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 10.3] [Reference Citation Analysis]
10 Prouty EW, Chandler DJ, Waterhouse BD. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons. Brain Res 2017;1675:28-40. [PMID: 28867482 DOI: 10.1016/j.brainres.2017.08.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
11 Mor D, Kang JW, Wyllie P, Thirunavukarasu V, Houlton H, Austin PJ, Keay KA. Recruitment of dorsal midbrain catecholaminergic pathways in the recovery from nerve injury evoked disabilities. Mol Pain 2015;11:50. [PMID: 26283658 DOI: 10.1186/s12990-015-0049-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
12 Anderegg A, Poulin JF, Awatramani R. Molecular heterogeneity of midbrain dopaminergic neurons--Moving toward single cell resolution. FEBS Lett 2015;589:3714-26. [PMID: 26505674 DOI: 10.1016/j.febslet.2015.10.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 5.4] [Reference Citation Analysis]
13 McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RAM, Chung SL, Richie CT, Harvey BK, Bonci A. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep 2014;8:1857-69. [PMID: 25242321 DOI: 10.1016/j.celrep.2014.08.037] [Cited by in Crossref: 115] [Cited by in F6Publishing: 105] [Article Influence: 14.4] [Reference Citation Analysis]
14 Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Front Neuroanat 2019;13:48. [PMID: 31133823 DOI: 10.3389/fnana.2019.00048] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
15 Bhave VM, Nectow AR. The dorsal raphe nucleus in the control of energy balance. Trends Neurosci 2021;44:946-60. [PMID: 34663507 DOI: 10.1016/j.tins.2021.09.004] [Reference Citation Analysis]
16 Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn Mem 2015;22:452-60. [PMID: 26286655 DOI: 10.1101/lm.037317.114] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
17 Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE, Cicconet M, Sabatini BL. Molecular and anatomical organization of the dorsal raphe nucleus. Elife 2019;8:e46464. [PMID: 31411560 DOI: 10.7554/eLife.46464] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
18 de Natale ER, Wilson H, Politis M. Serotonergic imaging in Parkinson's disease. Prog Brain Res 2021;261:303-38. [PMID: 33785134 DOI: 10.1016/bs.pbr.2020.11.001] [Reference Citation Analysis]
19 Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell 2021;184:1500-16. [PMID: 33691140 DOI: 10.1016/j.cell.2021.02.028] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Groessl F, Munsch T, Meis S, Griessner J, Kaczanowska J, Pliota P, Kargl D, Badurek S, Kraitsy K, Rassoulpour A, Zuber J, Lessmann V, Haubensak W. Dorsal tegmental dopamine neurons gate associative learning of fear. Nat Neurosci 2018;21:952-62. [PMID: 29950668 DOI: 10.1038/s41593-018-0174-5] [Cited by in Crossref: 59] [Cited by in F6Publishing: 50] [Article Influence: 14.8] [Reference Citation Analysis]
21 Lin R, Liang J, Luo M. The Raphe Dopamine System: Roles in Salience Encoding, Memory Expression, and Addiction. Trends Neurosci 2021;44:366-77. [PMID: 33568331 DOI: 10.1016/j.tins.2021.01.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Challis C, Berton O. Top-Down Control of Serotonin Systems by the Prefrontal Cortex: A Path toward Restored Socioemotional Function in Depression. ACS Chem Neurosci 2015;6:1040-54. [PMID: 25706226 DOI: 10.1021/acschemneuro.5b00007] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
23 Poulin JF, Zou J, Drouin-Ouellet J, Kim KY, Cicchetti F, Awatramani RB. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep 2014;9:930-43. [PMID: 25437550 DOI: 10.1016/j.celrep.2014.10.008] [Cited by in Crossref: 158] [Cited by in F6Publishing: 146] [Article Influence: 19.8] [Reference Citation Analysis]
24 Bullock D. Dopamine and Its Actions in the Basal Ganglia System. In: Soghomonian J, editor. The Basal Ganglia. Cham: Springer International Publishing; 2016. pp. 87-113. [DOI: 10.1007/978-3-319-42743-0_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
26 Cardozo Pinto DF, Yang H, Pollak Dorocic I, de Jong JW, Han VJ, Peck JR, Zhu Y, Liu C, Beier KT, Smidt MP, Lammel S. Characterization of transgenic mouse models targeting neuromodulatory systems reveals organizational principles of the dorsal raphe. Nat Commun 2019;10:4633. [PMID: 31604921 DOI: 10.1038/s41467-019-12392-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
27 Colina C, Puhl HL 3rd, Ikeda SR. Selective tracking of FFAR3-expressing neurons supports receptor coupling to N-type calcium channels in mouse sympathetic neurons. Sci Rep 2018;8:17379. [PMID: 30478340 DOI: 10.1038/s41598-018-35690-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
28 Gilpin NW, Yu W, Kash TL. Forebrain-Midbrain Circuits and Peptides Involved in Hyperalgesia After Chronic Alcohol Exposure. Alcohol Res 2021;41:13. [PMID: 34729286 DOI: 10.35946/arcr.v41.1.13] [Reference Citation Analysis]
29 Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, Gradinaru V. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 2017;94:1205-1219.e8. [PMID: 28602690 DOI: 10.1016/j.neuron.2017.05.020] [Cited by in Crossref: 112] [Cited by in F6Publishing: 107] [Article Influence: 22.4] [Reference Citation Analysis]
30 Matthews GA, Nieh EH, Vander Weele CM, Halbert SA, Pradhan RV, Yosafat AS, Glober GF, Izadmehr EM, Thomas RE, Lacy GD, Wildes CP, Ungless MA, Tye KM. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell 2016;164:617-31. [PMID: 26871628 DOI: 10.1016/j.cell.2015.12.040] [Cited by in Crossref: 155] [Cited by in F6Publishing: 141] [Article Influence: 25.8] [Reference Citation Analysis]
31 Auger ML, Schmidt ER, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. Eur J Neurosci 2013;38:2853-63. [PMID: 23738838 DOI: 10.1111/ejn.12270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
32 Oliva I, Wanat MJ. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front Psychiatry 2016;7:30. [PMID: 27014097 DOI: 10.3389/fpsyt.2016.00030] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
33 Paul EJ, Kalk E, Tossell K, Irvine EE, Franks NP, Wisden W, Withers DJ, Leiper J, Ungless MA. nNOS-Expressing Neurons in the Ventral Tegmental Area and Substantia Nigra Pars Compacta. eNeuro 2018;5:ENEURO. [PMID: 30456293 DOI: 10.1523/ENEURO.0381-18.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
34 Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019;1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]