BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 2010;32:448-57. [PMID: 20597977 DOI: 10.1111/j.1460-9568.2010.07295.x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G, Mourrain P, Appelbaum L. Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Mol Neurobiol 2017;54:6581-97. [PMID: 27734337 DOI: 10.1007/s12035-016-0175-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
2 Hall S, Deurveilher S, Ko KR, Burns J, Semba K. Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behav Brain Res 2017;322:9-17. [PMID: 28089853 DOI: 10.1016/j.bbr.2017.01.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
3 Li JX, Yoshida T, Monk KJ, Katz DB. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J Neurosci 2013;33:9462-73. [PMID: 23719813 DOI: 10.1523/JNEUROSCI.3935-12.2013] [Cited by in Crossref: 41] [Article Influence: 4.6] [Reference Citation Analysis]
4 Herrera CG, Ponomarenko A, Korotkova T, Burdakov D, Adamantidis A. Sleep & metabolism: The multitasking ability of lateral hypothalamic inhibitory circuitries. Front Neuroendocrinol 2017;44:27-34. [PMID: 27884682 DOI: 10.1016/j.yfrne.2016.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
5 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
6 Papale LA, Makinson CD, Christopher Ehlen J, Tufik S, Decker MJ, Paul KN, Escayg A. Altered sleep regulation in a mouse model of SCN1A-derived genetic epilepsy with febrile seizures plus (GEFS+). Epilepsia 2013;54:625-34. [PMID: 23311867 DOI: 10.1111/epi.12060] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
7 Stratford TR, Wirtshafter D. Lateral hypothalamic involvement in feeding elicited from the ventral pallidum. Eur J Neurosci 2013;37:648-53. [PMID: 23190138 DOI: 10.1111/ejn.12077] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
8 España RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep 2011;34:845-58. [PMID: 21731134 DOI: 10.5665/SLEEP.1112] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 7.4] [Reference Citation Analysis]
9 Ardianto C, Yonemochi N, Yamamoto S, Yang L, Takenoya F, Shioda S, Nagase H, Ikeda H, Kamei J. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons. Neuroscience 2016;320:183-93. [DOI: 10.1016/j.neuroscience.2016.02.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
10 Renouard L, Billwiller F, Ogawa K, Clément O, Camargo N, Abdelkarim M, Gay N, Scoté-Blachon C, Touré R, Libourel PA, Ravassard P, Salvert D, Peyron C, Claustrat B, Léger L, Salin P, Malleret G, Fort P, Luppi PH. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci Adv 2015;1:e1400177. [PMID: 26601158 DOI: 10.1126/sciadv.1400177] [Cited by in Crossref: 66] [Cited by in F6Publishing: 54] [Article Influence: 9.4] [Reference Citation Analysis]
11 Sakai K. Behavioural state-specific neurons in the mouse medulla involved in sleep-wake switching. Eur J Neurosci 2018;47:1482-503. [PMID: 29791042 DOI: 10.1111/ejn.13963] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
12 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
13 Shi Y, Xiao D, Dai L, Si Y, Fang Q, Wei X. The hypnotic effect of propofol involves inhibition of GABAergic neurons in the lateral hypothalamus. NeuroReport 2019;30:927-32. [DOI: 10.1097/wnr.0000000000001292] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Horne J. Why REM sleep? Clues beyond the laboratory in a more challenging world. Biological Psychology 2013;92:152-68. [DOI: 10.1016/j.biopsycho.2012.10.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
15 Luppi P, Clément O, Sapin E, Gervasoni D, Peyron C, Léger L, Salvert D, Fort P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Medicine Reviews 2011;15:153-63. [DOI: 10.1016/j.smrv.2010.08.002] [Cited by in Crossref: 176] [Cited by in F6Publishing: 146] [Article Influence: 16.0] [Reference Citation Analysis]
16 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Volgin DV, Lu JW, Stettner GM, Mann GL, Ross RJ, Morrison AR, Kubin L. Time- and behavioral state-dependent changes in posterior hypothalamic GABAA receptors contribute to the regulation of sleep. PLoS One 2014;9:e86545. [PMID: 24466145 DOI: 10.1371/journal.pone.0086545] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
18 Rattenborg NC, Lima SL, Lesku JA. Sleep locally, act globally. Neuroscientist 2012;18:533-46. [PMID: 22572533 DOI: 10.1177/1073858412441086] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
19 Jennum P, Christensen JA, Zoetmulder M. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development. Nat Sci Sleep 2016;8:107-20. [PMID: 27186147 DOI: 10.2147/NSS.S99240] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
20 Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Warren Spence D, Reiter RJ, Brown GM. Timing is everything: circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022;:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Reference Citation Analysis]
21 Clément O, Sapin E, Libourel PA, Arthaud S, Brischoux F, Fort P, Luppi PH. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci 2012;32:16763-74. [PMID: 23175830 DOI: 10.1523/JNEUROSCI.1885-12.2012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
22 Krenzer M, Lu J, Mayer G, Oertel W. From bench to bed: putative animal models of REM sleep behavior disorder (RBD). J Neural Transm (Vienna) 2013;120:683-8. [PMID: 23338670 DOI: 10.1007/s00702-012-0965-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
23 Swick TJ. Parkinson's disease and sleep/wake disturbances. Parkinsons Dis 2012;2012:205471. [PMID: 23326757 DOI: 10.1155/2012/205471] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
24 Li JX, Yoshida T, Monk KJ, Katz DB. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J Neurosci 2013;33:9462-73. [PMID: 23719813 DOI: 10.1523/JNEUROSCI.3935-12.2013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
25 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Matsuki T, Takasu M, Hirose Y, Murakoshi N, Sinton CM, Motoike T, Yanagisawa M. GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice. Neuroscience 2015;284:217-24. [PMID: 25286384 DOI: 10.1016/j.neuroscience.2014.09.063] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
27 Yonemochi N, Ardianto C, Ueda D, Kamei J, Ikeda H. GABAergic function in the lateral hypothalamus regulates feeding behavior: Possible mediation via orexin. Neuropsychopharmacol Rep 2019;39:289-96. [PMID: 31618533 DOI: 10.1002/npr2.12080] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
28 Larson-Prior LJ, Ju YE, Galvin JE. Cortical-subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep-wake cycle. Front Neurol 2014;5:165. [PMID: 25309500 DOI: 10.3389/fneur.2014.00165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
29 Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014;111:287-99. [PMID: 24174649 DOI: 10.1152/jn.00504.2013] [Cited by in Crossref: 65] [Cited by in F6Publishing: 51] [Article Influence: 7.2] [Reference Citation Analysis]
30 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
31 Ovsepian SV, Dolly JO, Zaborszky L. Intrinsic voltage dynamics govern the diversity of spontaneous firing profiles in basal forebrain noncholinergic neurons. J Neurophysiol. 2012;108:406-418. [PMID: 22496531 DOI: 10.1152/jn.00642.2011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
32 Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015;6:6266. [PMID: 25695914 DOI: 10.1038/ncomms7266] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
33 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Rolls A. Hypothalamic Control of Sleep in Aging. Neuromol Med 2012;14:139-53. [DOI: 10.1007/s12017-012-8175-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
35 Mészár Z, Girard F, Saper CB, Celio MR. The lateral hypothalamic parvalbumin-immunoreactive (PV1) nucleus in rodents. J Comp Neurol 2012;520:798-815. [PMID: 22020694 DOI: 10.1002/cne.22789] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
36 Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021;44:zsaa173. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F, Tafti M. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019;116:17061-70. [PMID: 31375626 DOI: 10.1073/pnas.1902148116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
38 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
39 Karnani MM, Szabó G, Erdélyi F, Burdakov D. Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin- and melanin-concentrating hormone neurons. J Physiol 2013;591:933-53. [PMID: 23184514 DOI: 10.1113/jphysiol.2012.243493] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 4.2] [Reference Citation Analysis]
40 Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L, Fuller PM, Lu J. Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 2012;32:17970-6. [PMID: 23238713 DOI: 10.1523/JNEUROSCI.0620-12.2012] [Cited by in Crossref: 72] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
41 Vyazovskiy VV, Delogu A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014;20:203-19. [PMID: 24598308 DOI: 10.1177/1073858413518152] [Cited by in Crossref: 80] [Cited by in F6Publishing: 62] [Article Influence: 10.0] [Reference Citation Analysis]
42 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
43 Ramaligam V, Chen MC, Saper CB, Lu J. Perspectives on the rapid eye movement sleep switch in rapid eye movement sleep behavior disorder. Sleep Med 2013;14:707-13. [PMID: 23768838 DOI: 10.1016/j.sleep.2013.03.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
44 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
45 Dessem D. Physiological, morphological and neurochemical characterization of neurons modulated by movement. J Vis Exp 2011:2650. [PMID: 21540820 DOI: 10.3791/2650] [Reference Citation Analysis]
46 Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2020;1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
47 Kostin A, Mcginty D, Szymusiak R, Alam M. Mechanisms mediating effects of nitric oxide on perifornical lateral hypothalamic neurons. Neuroscience 2012;220:179-90. [DOI: 10.1016/j.neuroscience.2012.06.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
48 Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 2016;19:290-8. [PMID: 26691833 DOI: 10.1038/nn.4209] [Cited by in Crossref: 140] [Cited by in F6Publishing: 126] [Article Influence: 20.0] [Reference Citation Analysis]
49 Siddiqi HM, Tabasum A, Qasim S, Akhtar MS, Kalsoom S, Ansari FL. Synthesis, Molecular Docking Studies, and Anticonvulsant Evaluation of Novel bis-Phenylhydrazones against Chemically induced Seizures in Mice: bis-Phenylhydrazones, Anticonvulsant, Docking. Journal of the Chinese Chemical Society 2017;64:940-52. [DOI: 10.1002/jccs.201700038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
50 Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, Tupone D, Zamboni G, Amici R. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One 2014;9:e112849. [PMID: 25398141 DOI: 10.1371/journal.pone.0112849] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
51 Venner A, De Luca R, Sohn LT, Bandaru SS, Verstegen AMJ, Arrigoni E, Fuller PM. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep. Curr Biol 2019;29:4155-4168.e5. [PMID: 31761703 DOI: 10.1016/j.cub.2019.10.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
52 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
53 Toossi H, Del Cid-Pellitero E, Jones BE. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. eNeuro 2017;4:ENEURO. [PMID: 29302615 DOI: 10.1523/ENEURO.0269-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
55 Dimitrov EL, Yanagawa Y, Usdin TB. Forebrain GABAergic projections to locus coeruleus in mouse. J Comp Neurol 2013;521:2373-97. [PMID: 23296594 DOI: 10.1002/cne.23291] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
56 Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 2015;213:7-18. [PMID: 25131833 DOI: 10.1111/apha.12360] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
57 Oesch LT, Gazea M, Gent TC, Bandarabadi M, Gutierrez Herrera C, Adamantidis AR. REM sleep stabilizes hypothalamic representation of feeding behavior. Proc Natl Acad Sci U S A 2020;117:19590-8. [PMID: 32732431 DOI: 10.1073/pnas.1921909117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
58 Cissé Y, Toossi H, Ishibashi M, Mainville L, Leonard CS, Adamantidis A, Jones BE. Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice. eNeuro 2018;5:ENEURO. [PMID: 30225352 DOI: 10.1523/ENEURO.0270-18.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
59 Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013;1491:68-77. [PMID: 23122879 DOI: 10.1016/j.brainres.2012.10.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
60 Charles MS, Zhang JH. Sleep a therapeutic target for stroke? Exp Neurol 2012;234:1-4. [PMID: 22226598 DOI: 10.1016/j.expneurol.2011.12.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
61 Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci 2012;32:3032-43. [PMID: 22378876 DOI: 10.1523/JNEUROSCI.5966-11.2012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
62 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
63 Jones BE. The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Med 2018;49:14-9. [PMID: 29983241 DOI: 10.1016/j.sleep.2018.05.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
64 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
65 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
66 Wright KP, Lowry CA, Lebourgeois MK. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 2012;5:50. [PMID: 22529774 DOI: 10.3389/fnmol.2012.00050] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 8.2] [Reference Citation Analysis]
67 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015;6:135. [PMID: 26124745 DOI: 10.3389/fneur.2015.00135] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
69 Luppi P, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews 2017;32:85-94. [DOI: 10.1016/j.smrv.2016.03.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 9.8] [Reference Citation Analysis]
70 Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol 2014;122:24-44. [PMID: 25172271 DOI: 10.1016/j.pneurobio.2014.08.001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 7.4] [Reference Citation Analysis]
71 Cabanas M, Pistono C, Puygrenier L, Rakesh D, Jeantet Y, Garret M, Cho YH. Neurophysiological and Behavioral Effects of Anti-Orexinergic Treatments in a Mouse Model of Huntington's Disease. Neurotherapeutics 2019;16:784-96. [PMID: 30915710 DOI: 10.1007/s13311-019-00726-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
72 Kostin A, Rai S, Kumar S, Szymusiak R, McGinty D, Alam MN. Nitric oxide production in the perifornical-lateral hypothalamic area and its influences on the modulation of perifornical-lateral hypothalamic area neurons. Neuroscience 2011;179:159-69. [PMID: 21277356 DOI: 10.1016/j.neuroscience.2011.01.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
73 Luppi P, Clément O, Fort P. Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Current Opinion in Neurobiology 2013;23:786-92. [DOI: 10.1016/j.conb.2013.02.006] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 8.6] [Reference Citation Analysis]
74 Luppi P, Fort P. Neuroanatomical and Neurochemical Bases of Vigilance States. In: Landolt H, Dijk D, editors. Sleep-Wake Neurobiology and Pharmacology. Cham: Springer International Publishing; 2019. pp. 35-58. [DOI: 10.1007/164_2017_84] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
75 Jones BE, Hassani OK. The role of Hcrt/Orx and MCH neurons in sleep-wake state regulation. Sleep 2013;36:1769-72. [PMID: 24293746 DOI: 10.5665/sleep.3188] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
76 Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019;22:642-56. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 73] [Article Influence: 31.3] [Reference Citation Analysis]
77 Lüthi A. Sleep: Switching Off the Off-Switch. Current Biology 2016;26:R765-7. [DOI: 10.1016/j.cub.2016.06.059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
78 Torterolo P, Castro-Zaballa S, Cavelli M, Chase MH, Falconi A. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy. Eur J Neurosci 2016;43:580-9. [PMID: 26670051 DOI: 10.1111/ejn.13151] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
79 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
80 Joiner WJ. The Neurobiological Basis of Sleep and Sleep Disorders. Physiology (Bethesda) 2018;33:317-27. [PMID: 30109824 DOI: 10.1152/physiol.00013.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
81 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
82 Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol 2014;4:1511-62. [PMID: 25428853 DOI: 10.1002/cphy.c140004] [Cited by in Crossref: 153] [Cited by in F6Publishing: 139] [Article Influence: 21.9] [Reference Citation Analysis]
83 Tang Y, Benusiglio D, Grinevich V, Lin L. Distinct Types of Feeding Related Neurons in Mouse Hypothalamus. Front Behav Neurosci 2016;10:91. [PMID: 27242460 DOI: 10.3389/fnbeh.2016.00091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
84 Sirieix C, Gervasoni D, Luppi PH, Léger L. Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 2012;7:e28724. [PMID: 22235249 DOI: 10.1371/journal.pone.0028724] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
85 Borniger JC, de Lecea L. Peripheral Lipopolyssacharide Rapidly Silences REM-Active LHGABA Neurons. Front Behav Neurosci 2021;15:649428. [PMID: 33716686 DOI: 10.3389/fnbeh.2021.649428] [Reference Citation Analysis]