BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: González JA, Jensen LT, Doyle SE, Miranda-Anaya M, Menaker M, Fugger L, Bayliss DA, Burdakov D. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 2009;30:57-64. [PMID: 19508695 DOI: 10.1111/j.1460-9568.2009.06789.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2012;2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 54] [Article Influence: 2.4] [Reference Citation Analysis]
2 Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci 2019;42:807-24. [PMID: 31635852 DOI: 10.1016/j.tins.2019.09.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 14.3] [Reference Citation Analysis]
3 Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 137-56. [DOI: 10.1007/7854_2016_51] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
4 Sheng Z, Santiago AM, Thomas MP, Routh VH. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol Cell Neurosci 2014;62:30-41. [PMID: 25107627 DOI: 10.1016/j.mcn.2014.08.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 8.0] [Reference Citation Analysis]
5 Prieto ML, Firouzi K, Khuri-Yakub BT, Madison DV, Maduke M. Spike frequency-dependent inhibition and excitation of neural activity by high-frequency ultrasound. J Gen Physiol 2020;152:e202012672. [PMID: 33074301 DOI: 10.1085/jgp.202012672] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
6 Guyenet PG, Stornetta RL, Bayliss DA. Central respiratory chemoreception. J Comp Neurol 2010;518:3883-906. [PMID: 20737591 DOI: 10.1002/cne.22435] [Cited by in Crossref: 154] [Cited by in F6Publishing: 146] [Article Influence: 12.8] [Reference Citation Analysis]
7 Routh VH, Donovan CM, Ritter S. 2. Hypoglycemia Detection. Transl Endocrinol Metab 2012;3:47-87. [PMID: 24910721 DOI: 10.1210/team.9781936704200.ch2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
8 Thorens B. Sensing of glucose in the brain. Handb Exp Pharmacol 2012;:277-94. [PMID: 22249819 DOI: 10.1007/978-3-642-24716-3_12] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 4.7] [Reference Citation Analysis]
9 Parra A, Gonzalez-Gonzalez O, Gallar J, Belmonte C. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea. Pain 2014;155:1481-91. [PMID: 24785271 DOI: 10.1016/j.pain.2014.04.025] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 8.5] [Reference Citation Analysis]
10 Marsh B, Acosta C, Djouhri L, Lawson SN. Leak K⁺ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci 2012;49:375-86. [PMID: 22273507 DOI: 10.1016/j.mcn.2012.01.002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 7.8] [Reference Citation Analysis]
11 Shukla C, Basheer R. Metabolic signals in sleep regulation: recent insights. Nat Sci Sleep 2016;8:9-20. [PMID: 26793010 DOI: 10.2147/NSS.S62365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
12 Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021. [PMID: 33905176 DOI: 10.1111/febs.15900] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Dadi PK, Vierra NC, Jacobson DA. Pancreatic β-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology 2014;155:3757-68. [PMID: 24932805 DOI: 10.1210/en.2013-2051] [Cited by in Crossref: 25] [Cited by in F6Publishing: 1] [Article Influence: 3.1] [Reference Citation Analysis]
14 Yi CX, la Fleur SE, Fliers E, Kalsbeek A. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta 2010;1802:416-31. [PMID: 20060897 DOI: 10.1016/j.bbadis.2010.01.006] [Cited by in Crossref: 103] [Cited by in F6Publishing: 108] [Article Influence: 8.6] [Reference Citation Analysis]
15 Stanley S, Moheet A, Seaquist ER. Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia. Endocr Rev 2019;40:768-88. [PMID: 30689785 DOI: 10.1210/er.2018-00226] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
16 Dadi PK, Vierra NC, Jacobson DA. Pancreatic β-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology 2014;155:3757-68. [PMID: 24932805 DOI: 10.1210/en.2013-2051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
17 Schwarz JR. Function of K2P channels in the mammalian node of Ranvier. J Physiol 2021;599:4427-39. [PMID: 34425634 DOI: 10.1113/JP281723] [Reference Citation Analysis]
18 Pendergast JS, Yamazaki S. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models. J Biol Rhythms 2018;33:458-74. [PMID: 30033846 DOI: 10.1177/0748730418789043] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
19 MacKenzie G, Franks NP, Brickley SG. Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels. Pflugers Arch 2015;467:989-99. [PMID: 25482670 DOI: 10.1007/s00424-014-1660-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
20 Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V, Talley EM, Chen X, Bayliss DA. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J Neurosci. 2010;30:7691-7704. [PMID: 20519544 DOI: 10.1523/jneurosci.1655-10.2010] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
21 Tsunematsu T, Yamanaka A. The Role of Orexin/Hypocretin in the Central Nervous System and Peripheral Tissues. Sleep Hormones. Elsevier; 2012. pp. 19-33. [DOI: 10.1016/b978-0-12-394623-2.00002-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
22 Kazmierczak M, Zhang X, Chen B, Mulkey DK, Shi Y, Wagner PG, Pivaroff-Ward K, Sassic JK, Bayliss DA, Jegla T. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor. J Gen Physiol 2013;141:721-35. [PMID: 23712551 DOI: 10.1085/jgp.201210938] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
23 Wang X, Guan R, Zhao X, Chen J, Zhu D, Shen L, Song N. TASK1 and TASK3 in orexin neuron of lateral hypothalamus contribute to respiratory chemoreflex by projecting to nucleus tractus solitarius. FASEB J 2021;35:e21532. [PMID: 33817828 DOI: 10.1096/fj.202002189R] [Reference Citation Analysis]
24 Li X, Martinson AS, Layden MJ, Diatta FH, Sberna AP, Simmons DK, Martindale MQ, Jegla TJ. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. J Exp Biol 2015;218:526-36. [PMID: 25696816 DOI: 10.1242/jeb.110080] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
25 Trapp S, Ballanyi K. Autonomic Nervous System In Vitro: Studying Tonically Active Neurons Controlling Vagal Outflow in Rodent Brainstem Slices. In: Ballanyi K, editor. Isolated Central Nervous System Circuits. Totowa: Humana Press; 2012. pp. 1-59. [DOI: 10.1007/978-1-62703-020-5_1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
26 Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2015;35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
27 Tanaka S, Honda Y, Takaku S, Koike T, Oe S, Hirahara Y, Yoshida T, Takizawa N, Takamori Y, Kurokawa K, Kodama T, Yamada H. Involvement of PLAGL1/ZAC1 in hypocretin/orexin transcription. Int J Mol Med 2019;43:2164-76. [PMID: 30896835 DOI: 10.3892/ijmm.2019.4143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
28 Alvarsson A, Stanley SA. Remote control of glucose-sensing neurons to analyze glucose metabolism. Am J Physiol Endocrinol Metab 2018;315:E327-39. [PMID: 29812985 DOI: 10.1152/ajpendo.00469.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ehling P, Bittner S, Bobak N, Schwarz T, Wiendl H, Budde T, Kleinschnitz C, Meuth SG. Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). Exp Transl Stroke Med 2010;2:14. [PMID: 20646278 DOI: 10.1186/2040-7378-2-14] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
30 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Cited by in Crossref: 537] [Cited by in F6Publishing: 513] [Article Influence: 44.8] [Reference Citation Analysis]
32 Koizumi H, Smerin SE, Yamanishi T, Moorjani BR, Zhang R, Smith JC. TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro. J Neurosci 2010;30:4273-84. [PMID: 20335463 DOI: 10.1523/JNEUROSCI.4017-09.2010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
33 Lesage F, Barhanin J. Molecular Physiology of pH-Sensitive Background K 2P Channels. Physiology 2011;26:424-37. [DOI: 10.1152/physiol.00029.2011] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 4.9] [Reference Citation Analysis]
34 Karnani M, Burdakov D. Multiple hypothalamic circuits sense and regulate glucose levels. Am J Physiol Regul Integr Comp Physiol 2011;300:R47-55. [PMID: 21048078 DOI: 10.1152/ajpregu.00527.2010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 5.6] [Reference Citation Analysis]
35 Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013;121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 7.7] [Reference Citation Analysis]
36 Routh VH, Hao L, Santiago AM, Sheng Z, Zhou C. Hypothalamic glucose sensing: making ends meet. Front Syst Neurosci 2014;8:236. [PMID: 25540613 DOI: 10.3389/fnsys.2014.00236] [Cited by in Crossref: 95] [Cited by in F6Publishing: 87] [Article Influence: 11.9] [Reference Citation Analysis]
37 Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol 2014;4:1511-62. [PMID: 25428853 DOI: 10.1002/cphy.c140004] [Cited by in Crossref: 153] [Cited by in F6Publishing: 139] [Article Influence: 21.9] [Reference Citation Analysis]
38 Feliciangeli S, Chatelain FC, Bichet D, Lesage F. The family of K2P channels: salient structural and functional properties. J Physiol 2015;593:2587-603. [PMID: 25530075 DOI: 10.1113/jphysiol.2014.287268] [Cited by in Crossref: 112] [Cited by in F6Publishing: 101] [Article Influence: 16.0] [Reference Citation Analysis]
39 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
40 Burdakov D, Lesage F. Glucose-induced inhibition: how many ionic mechanisms? Acta Physiol (Oxf) 2010;198:295-301. [PMID: 19473131 DOI: 10.1111/j.1748-1716.2009.02005.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
41 Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020;32:e12773. [PMID: 31329314 DOI: 10.1111/jne.12773] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
42 Kernder A, De Luca R, Yanovsky Y, Haas HL, Sergeeva OA. Acid-sensing hypothalamic neurons controlling arousal. Cell Mol Neurobiol 2014;34:777-89. [PMID: 24798513 DOI: 10.1007/s10571-014-0065-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
43 Lazarenko RM, Stornetta RL, Bayliss DA, Guyenet PG. Orexin A activates retrotrapezoid neurons in mice. Respir Physiol Neurobiol 2011;175:283-7. [PMID: 21145990 DOI: 10.1016/j.resp.2010.12.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 3.3] [Reference Citation Analysis]
44 Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021;145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Reference Citation Analysis]
45 Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflugers Arch 2015;467:917-29. [PMID: 25346157 DOI: 10.1007/s00424-014-1633-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
46 Venner A, Karnani MM, Gonzalez JA, Jensen LT, Fugger L, Burdakov D. Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol 2011;589:5701-8. [PMID: 22005675 DOI: 10.1113/jphysiol.2011.217000] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]