BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Henny P, Jones BE. Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 2008;27:654-70. [PMID: 18279318 DOI: 10.1111/j.1460-9568.2008.06029.x] [Cited by in Crossref: 172] [Cited by in F6Publishing: 173] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu C, Shi F, Fu B, Luo T, Zhang L, Zhang Y, Zhang Y, Yu S, Yu T. GABAA receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int J Neurosci 2020;:1-13. [PMID: 33174773 DOI: 10.1080/00207454.2020.1840375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Duffy AM, Zhou P, Milner TA, Pickel VM. Spatial and intracellular relationships between the alpha7 nicotinic acetylcholine receptor and the vesicular acetylcholine transporter in the prefrontal cortex of rat and mouse. Neuroscience 2009;161:1091-103. [PMID: 19374941 DOI: 10.1016/j.neuroscience.2009.04.024] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 2.7] [Reference Citation Analysis]
3 Lecrux C, Kocharyan A, Sandoe CH, Tong XK, Hamel E. Pyramidal cells and cytochrome P450 epoxygenase products in the neurovascular coupling response to basal forebrain cholinergic input. J Cereb Blood Flow Metab 2012;32:896-906. [PMID: 22293985 DOI: 10.1038/jcbfm.2012.4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
4 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
5 Smith MO, Ball J, Holloway BB, Erdelyi F, Szabo G, Stone E, Graham J, Lawrence JJ. Measuring Aggregation of Events about a Mass Using Spatial Point Pattern Methods. Spat Stat 2015;13:76-89. [PMID: 29046865 DOI: 10.1016/j.spasta.2015.05.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
6 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
7 Schubert D, Martens GJ, Kolk SM. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015;20:795-809. [PMID: 25450230 DOI: 10.1038/mp.2014.147] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 10.1] [Reference Citation Analysis]
8 Hassani OK, Lee MG, Henny P, Jones BE. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 2009;29:11828-40. [PMID: 19776269 DOI: 10.1523/JNEUROSCI.1259-09.2009] [Cited by in Crossref: 126] [Cited by in F6Publishing: 80] [Article Influence: 9.7] [Reference Citation Analysis]
9 Arrigoni E, Mochizuki T, Scammell TE. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 2010;198:223-35. [PMID: 19723027 DOI: 10.1111/j.1748-1716.2009.02036.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 5.1] [Reference Citation Analysis]
10 James MH, Campbell EJ, Dayas CV. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders. Curr Top Behav Neurosci 2017;33:197-219. [PMID: 28083790 DOI: 10.1007/7854_2016_56] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 11.0] [Reference Citation Analysis]
11 Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. J Neurosci 2016;36:2057-67. [PMID: 26865627 DOI: 10.1523/JNEUROSCI.3318-15.2016] [Cited by in Crossref: 59] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
12 Abadesco AD, Cilluffo M, Yvone GM, Carpenter EM, Howell BW, Phelps PE. Novel Disabled-1-expressing neurons identified in adult brain and spinal cord. Eur J Neurosci 2014;39:579-92. [PMID: 24251407 DOI: 10.1111/ejn.12416] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
13 Frahm S, Antolin-Fontes B, Görlich A, Zander JF, Ahnert-Hilger G, Ibañez-Tallon I. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. Elife 2015;4:e11396. [PMID: 26623516 DOI: 10.7554/eLife.11396] [Cited by in Crossref: 40] [Cited by in F6Publishing: 24] [Article Influence: 5.7] [Reference Citation Analysis]
14 Lecrux C, Hamel E. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B Biol Sci 2016;371:20150350. [PMID: 27574304 DOI: 10.1098/rstb.2015.0350] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 10.2] [Reference Citation Analysis]
15 Pereira PA, Millner T, Vilela M, Sousa S, Cardoso A, Madeira MD. Nerve growth factor-induced plasticity in medial prefrontal cortex interneurons of aged Wistar rats. Experimental Gerontology 2016;85:59-70. [DOI: 10.1016/j.exger.2016.09.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
16 Vardar B, Güçlü B. Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Brain Struct Funct 2020;225:1761-76. [PMID: 32495132 DOI: 10.1007/s00429-020-02091-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Obermayer J, Verhoog MB, Luchicchi A, Mansvelder HD. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain. Front Neural Circuits 2017;11:100. [PMID: 29276477 DOI: 10.3389/fncir.2017.00100] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
18 Lagus M, Gass N, Saharinen J, Savelyev S, Porkka-Heiskanen T, Paunio T. Inter-tissue networks between the basal forebrain, hippocampus, and prefrontal cortex in a model for depression caused by disturbed sleep. J Neurogenet 2012;26:397-412. [PMID: 22783900 DOI: 10.3109/01677063.2012.694932] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Schipper P, Brivio P, de Leest D, Madder L, Asrar B, Rebuglio F, Verheij MMM, Kozicz T, Riva MA, Calabrese F, Henckens MJAG, Homberg JR. Impaired Fear Extinction Recall in Serotonin Transporter Knockout Rats Is Transiently Alleviated during Adolescence. Brain Sci 2019;9:E118. [PMID: 31121975 DOI: 10.3390/brainsci9050118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
20 [DOI: 10.1101/701318] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Meneghini S, Modena D, Colombo G, Coatti A, Milani N, Madaschi L, Amadeo A, Becchetti A. The β2V287L nicotinic subunit linked to sleep-related epilepsy differently affects fast-spiking and regular spiking somatostatin-expressing neurons in murine prefrontal cortex. Progress in Neurobiology 2022. [DOI: 10.1016/j.pneurobio.2022.102279] [Reference Citation Analysis]
22 España RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep 2011;34:845-58. [PMID: 21731134 DOI: 10.5665/SLEEP.1112] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 7.4] [Reference Citation Analysis]
23 Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Sci Rep 2019;9:2570. [PMID: 30796293 DOI: 10.1038/s41598-019-39203-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Froemke RC, Martins AR. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity. Hear Res 2011;279:149-61. [PMID: 21426927 DOI: 10.1016/j.heares.2011.03.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
25 Kostin A, Stenberg D, Porkka-heiskanen T. Nitric oxide modulates the discharge rate of basal forebrain neurones: a study in freely moving rats. Journal of Sleep Research 2009;18:447-53. [DOI: 10.1111/j.1365-2869.2009.00761.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
26 Alitto HJ, Dan Y. Cell-type-specific modulation of neocortical activity by basal forebrain input. Front Syst Neurosci 2012;6:79. [PMID: 23316142 DOI: 10.3389/fnsys.2012.00079] [Cited by in Crossref: 51] [Cited by in F6Publishing: 79] [Article Influence: 5.7] [Reference Citation Analysis]
27 Avila I, Lin SC. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed. PLoS Biol 2014;12:e1001811. [PMID: 24642480 DOI: 10.1371/journal.pbio.1001811] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
28 Brooks JM, Sarter M, Bruno JP. Transient inactivation of the neonatal ventral hippocampus permanently disrupts the mesolimbic regulation of prefrontal cholinergic transmission: implications for schizophrenia. Neuropsychopharmacology 2011;36:2477-87. [PMID: 21814184 DOI: 10.1038/npp.2011.136] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
29 McDonald AJ, Muller JF, Mascagni F. Postsynaptic targets of GABAergic basal forebrain projections to the basolateral amygdala. Neuroscience 2011;183:144-59. [PMID: 21435381 DOI: 10.1016/j.neuroscience.2011.03.027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 2.8] [Reference Citation Analysis]
30 Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018;192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 50] [Article Influence: 15.3] [Reference Citation Analysis]
31 Williams RH, Vazquez-DeRose J, Thomas AM, Piquet J, Cauli B, Kilduff TS. Cortical nNOS/NK1 Receptor Neurons are Regulated by Cholinergic Projections From the Basal Forebrain. Cereb Cortex 2018;28:1959-79. [PMID: 28472227 DOI: 10.1093/cercor/bhx102] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
32 Tingley D, Alexander AS, Quinn LK, Chiba AA, Nitz DA. Cell assemblies of the basal forebrain. J Neurosci 2015;35:2992-3000. [PMID: 25698736 DOI: 10.1523/JNEUROSCI.4432-14.2015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
33 McDonald AJ, Mascagni F, Zaric V. Subpopulations of somatostatin-immunoreactive non-pyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex. Front Neural Circuits 2012;6:46. [PMID: 22837739 DOI: 10.3389/fncir.2012.00046] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
34 Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 2017;8:734. [PMID: 28963505 DOI: 10.1038/s41467-017-00781-4] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 16.6] [Reference Citation Analysis]
35 Boucetta S, Jones BE. Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 2009;29:4664-74. [PMID: 19357291 DOI: 10.1523/JNEUROSCI.5502-08.2009] [Cited by in Crossref: 75] [Cited by in F6Publishing: 41] [Article Influence: 5.8] [Reference Citation Analysis]
36 Barbero-Castillo A, Riefolo F, Matera C, Caldas-Martínez S, Mateos-Aparicio P, Weinert JF, Garrido-Charles A, Claro E, Sanchez-Vives MV, Gorostiza P. Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. Adv Sci (Weinh) 2021;8:e2005027. [PMID: 34018704 DOI: 10.1002/advs.202005027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Lawrence JJ. Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends in Neurosciences 2008;31:317-27. [DOI: 10.1016/j.tins.2008.03.008] [Cited by in Crossref: 80] [Cited by in F6Publishing: 79] [Article Influence: 5.7] [Reference Citation Analysis]
38 Suzuki S, Saitoh A, Ohashi M, Yamada M, Oka J, Yamada M. The infralimbic and prelimbic medial prefrontal cortices have differential functions in the expression of anxiety-like behaviors in mice. Behavioural Brain Research 2016;304:120-4. [DOI: 10.1016/j.bbr.2016.01.044] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
39 Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 2015;6:8744. [PMID: 26524973 DOI: 10.1038/ncomms9744] [Cited by in Crossref: 146] [Cited by in F6Publishing: 139] [Article Influence: 20.9] [Reference Citation Analysis]
40 Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 2015;112:3535-40. [PMID: 25733878 DOI: 10.1073/pnas.1413625112] [Cited by in Crossref: 151] [Cited by in F6Publishing: 133] [Article Influence: 21.6] [Reference Citation Analysis]
41 Beak SK, Hong EY, Lee HS. Collateral projection from the forebrain and mesopontine cholinergic neurons to whisker-related, sensory and motor regions of the rat. Brain Res 2010;1336:30-45. [PMID: 20381464 DOI: 10.1016/j.brainres.2010.03.100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
42 Xue B, Mao LM, Jin DZ, Wang JQ. Regulation of synaptic MAPK/ERK phosphorylation in the rat striatum and medial prefrontal cortex by dopamine and muscarinic acetylcholine receptors. J Neurosci Res 2015;93:1592-9. [PMID: 26153447 DOI: 10.1002/jnr.23622] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
43 Bennett C, Arroyo S, Hestrin S. Controlling brain states. Neuron 2014;83:260-1. [PMID: 25033175 DOI: 10.1016/j.neuron.2014.07.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
44 Duffy AM, Fitzgerald ML, Chan J, Robinson DC, Milner TA, Mackie K, Pickel VM. Acetylcholine α7 nicotinic and dopamine D2 receptors are targeted to many of the same postsynaptic dendrites and astrocytes in the rodent prefrontal cortex. Synapse 2011;65:1350-67. [PMID: 21858872 DOI: 10.1002/syn.20977] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
45 Vanini G, Lydic R, Baghdoyan HA. GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep 2012;35:1325-34. [PMID: 23024430 DOI: 10.5665/sleep.2106] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
46 Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 2015;25:118-37. [PMID: 23964066 DOI: 10.1093/cercor/bht210] [Cited by in Crossref: 159] [Cited by in F6Publishing: 145] [Article Influence: 17.7] [Reference Citation Analysis]
47 Lelkes Z, Abdurakhmanova S, Porkka-Heiskanen T. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate. J Sleep Res 2018;27:e12605. [PMID: 28921744 DOI: 10.1111/jsr.12605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
48 Tingley D, Alexander AS, Kolbu S, de Sa VR, Chiba AA, Nitz DA. Task-phase-specific dynamics of basal forebrain neuronal ensembles. Front Syst Neurosci 2014;8:174. [PMID: 25309352 DOI: 10.3389/fnsys.2014.00174] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
49 Likhtik E, Johansen JP. Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 2019;22:1586-97. [PMID: 31551602 DOI: 10.1038/s41593-019-0503-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
50 Schmitz TW, Mur M, Aghourian M, Bedard M, Spreng RN. Longitudinal Alzheimer’s Degeneration Reflects the Spatial Topography of Cholinergic Basal Forebrain Projections. Cell Reports 2018;24:38-46. [DOI: 10.1016/j.celrep.2018.06.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
51 Yang C, Franciosi S, Brown RE. Adenosine inhibits the excitatory synaptic inputs to Basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front Neurol 2013;4:77. [PMID: 23801984 DOI: 10.3389/fneur.2013.00077] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
52 Dean JG, Fields CW, Brito MA, Silverstein BH, Rybicki-Kler C, Fryzel AM, Groenhout T, Liu T, Mashour GA, Pal D. Inactivation of Prefrontal Cortex Attenuates Behavioral Arousal Induced by Stimulation of Basal Forebrain During Sevoflurane Anesthesia. Anesth Analg 2022;134:1140-52. [PMID: 35436248 DOI: 10.1213/ANE.0000000000006011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Unal G, Crump MG, Viney TJ, Éltes T, Katona L, Klausberger T, Somogyi P. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain Struct Funct 2018;223:2409-32. [PMID: 29500537 DOI: 10.1007/s00429-018-1626-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
54 Zielinski MR, McKenna JT, McCarley RW. Functions and Mechanisms of Sleep. AIMS Neurosci 2016;3:67-104. [PMID: 28413828 DOI: 10.3934/Neuroscience.2016.1.67] [Cited by in Crossref: 41] [Cited by in F6Publishing: 16] [Article Influence: 6.8] [Reference Citation Analysis]
55 Hedrick T, Waters J. Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. J Neurophysiol 2015;113:2195-209. [PMID: 25589590 DOI: 10.1152/jn.00716.2014] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 6.6] [Reference Citation Analysis]
56 Silkis IG. Role of Acetylcholine and GABAergic Inhibitory Transmission in Seizure Pattern Generation in Neural Networks Integrating the Neocortex, Hippocampus, Basal Ganglia, and Thalamus. Neurochem J 2020;14:150-66. [DOI: 10.1134/s1819712420020129] [Reference Citation Analysis]
57 Greene RW, Frank MG. Slow wave activity during sleep: functional and therapeutic implications. Neuroscientist 2010;16:618-33. [PMID: 20921564 DOI: 10.1177/1073858410377064] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
58 Zhang X, Liu Y, Yang B, Xu H. Inactivation of the Ventral Pallidum by GABAA Receptor Agonist Promotes Non-rapid Eye Movement Sleep in Rats. Neurochem Res 2020;45:1791-801. [DOI: 10.1007/s11064-020-03040-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Peñas-cazorla R, Vilaró MT. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations. Brain Struct Funct 2015;220:3413-34. [DOI: 10.1007/s00429-014-0864-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
60 Chen MC, Ferrari L, Sacchet MD, Foland-Ross LC, Qiu MH, Gotlib IH, Fuller PM, Arrigoni E, Lu J. Identification of a direct GABAergic pallidocortical pathway in rodents. Eur J Neurosci 2015;41:748-59. [PMID: 25581560 DOI: 10.1111/ejn.12822] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
61 Pafundo DE, Nicholas MA, Zhang R, Kuhlman SJ. Top-Down-Mediated Facilitation in the Visual Cortex Is Gated by Subcortical Neuromodulation. J Neurosci 2016;36:2904-14. [PMID: 26961946 DOI: 10.1523/JNEUROSCI.2909-15.2016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 5.2] [Reference Citation Analysis]
62 Arboit A, Krautwald K, Angenstein F. The cholinergic system modulates negative BOLD responses in the prefrontal cortex once electrical perforant pathway stimulation triggers neuronal afterdischarges in the hippocampus. J Cereb Blood Flow Metab 2021;:271678X211049820. [PMID: 34590894 DOI: 10.1177/0271678X211049820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Carreras I, Aytan N, Mellott T, Choi JK, Lehar M, Crabtree L, Leite-Morris K, Jenkins BG, Blusztajn JK, Dedeoglu A. Anxiety, neuroinflammation, cholinergic and GABAergic abnormalities are early markers of Gulf War illness in a mouse model of the disease. Brain Res 2018;1681:34-43. [PMID: 29277710 DOI: 10.1016/j.brainres.2017.12.030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
64 Unal B, Ibáñez-Sandoval O, Shah F, Abercrombie ED, Tepper JM. Distribution of tyrosine hydroxylase-expressing interneurons with respect to anatomical organization of the neostriatum. Front Syst Neurosci 2011;5:41. [PMID: 21713112 DOI: 10.3389/fnsys.2011.00041] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
65 Burk JA, Blumenthal SA, Maness EB. Neuropharmacology of attention. Eur J Pharmacol 2018;835:162-8. [PMID: 30092180 DOI: 10.1016/j.ejphar.2018.08.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
66 Meir I, Katz Y, Lampl I. Membrane Potential Correlates of Network Decorrelation and Improved SNR by Cholinergic Activation in the Somatosensory Cortex. J Neurosci 2018;38:10692-708. [PMID: 30373769 DOI: 10.1523/JNEUROSCI.1159-18.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
67 Eid L, Parent M. Cholinergic neurons intrinsic to the primate external pallidum. Synapse 2015;69:416-9. [PMID: 25967898 DOI: 10.1002/syn.21828] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
68 Kalmbach A, Waters J. Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice. J Neurophysiol 2014;111:258-72. [PMID: 24155009 DOI: 10.1152/jn.00244.2013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
69 Xing Y, Li K, Jiao Y, Li Z. Propofol Causes Consciousness Loss by Affecting GABA-A Receptor in the Nucleus Basalis of Rats. Behav Neurol 2020;2020:9370891. [PMID: 32148565 DOI: 10.1155/2020/9370891] [Reference Citation Analysis]
70 Garcia-Lopez R, Pombero A, Dominguez E, Geijo-Barrientos E, Martinez S. Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model. Exp Neurol 2015;271:215-27. [PMID: 26079645 DOI: 10.1016/j.expneurol.2015.06.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
71 Zhang ZW, Burke MW, Calakos N, Beaulieu JM, Vaucher E. Confocal Analysis of Cholinergic and Dopaminergic Inputs onto Pyramidal Cells in the Prefrontal Cortex of Rodents. Front Neuroanat 2010;4:21. [PMID: 20589096 DOI: 10.3389/fnana.2010.00021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 1.1] [Reference Citation Analysis]
72 Mattinson CE, Burmeister JJ, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA. Tonic and phasic release of glutamate and acetylcholine neurotransmission in sub-regions of the rat prefrontal cortex using enzyme-based microelectrode arrays. J Neurosci Methods 2011;202:199-208. [PMID: 21896284 DOI: 10.1016/j.jneumeth.2011.08.020] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 2.9] [Reference Citation Analysis]
73 Jones BE. Neurobiology of waking and sleeping. Handb Clin Neurol 2011;98:131-49. [PMID: 21056184 DOI: 10.1016/B978-0-444-52006-7.00009-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
74 Hamlin AS, Windels F, Boskovic Z, Sah P, Coulson EJ. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS One 2013;8:e53472. [PMID: 23320088 DOI: 10.1371/journal.pone.0053472] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
75 Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease. J Comp Neurol 2013;521:4124-44. [PMID: 23852922 DOI: 10.1002/cne.23415] [Cited by in Crossref: 155] [Cited by in F6Publishing: 148] [Article Influence: 19.4] [Reference Citation Analysis]
76 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
77 Brooks JM, Pershing ML, Thomsen MS, Mikkelsen JD, Sarter M, Bruno JP. Transient inactivation of the neonatal ventral hippocampus impairs attentional set-shifting behavior: reversal with an α7 nicotinic agonist. Neuropsychopharmacology 2012;37:2476-86. [PMID: 22781844 DOI: 10.1038/npp.2012.106] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
78 Cloke JM, Nguyen R, Chung BY, Wasserman DI, De Lisio S, Kim JC, Bailey CD, Winters BD. A Novel Multisensory Integration Task Reveals Robust Deficits in Rodent Models of Schizophrenia: Converging Evidence for Remediation via Nicotinic Receptor Stimulation of Inhibitory Transmission in the Prefrontal Cortex. J Neurosci 2016;36:12570-85. [PMID: 27974613 DOI: 10.1523/JNEUROSCI.1628-16.2016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
79 Schmitz TW, Zaborszky L. Spatial topography of the basal forebrain cholinergic projections: Organization and vulnerability to degeneration. Handb Clin Neurol 2021;179:159-73. [PMID: 34225960 DOI: 10.1016/B978-0-12-819975-6.00008-X] [Reference Citation Analysis]
80 Van der Zee EA, Keijser JN. Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2011;221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 2.2] [Reference Citation Analysis]
81 Frank MG. Clocking in: a circadian model of synaptic plasticity. Current Opinion in Physiology 2020;15:96-103. [DOI: 10.1016/j.cophys.2019.12.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Zolles G, Wagner E, Lampert A, Sutor B. Functional expression of nicotinic acetylcholine receptors in rat neocortical layer 5 pyramidal cells. Cereb Cortex 2009;19:1079-91. [PMID: 18794204 DOI: 10.1093/cercor/bhn158] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.7] [Reference Citation Analysis]
83 Hermanstyne TO, Kihira Y, Misono K, Deitchler A, Yanagawa Y, Misonou H. Immunolocalization of the voltage-gated potassium channel Kv2.2 in GABAergic neurons in the basal forebrain of rats and mice. J Comp Neurol 2010;518:4298-310. [PMID: 20853508 DOI: 10.1002/cne.22457] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
84 Konradsson-Geuken A, Gash CR, Alexander K, Pomerleau F, Huettl P, Gerhardt GA, Bruno JP. Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 2009;63:1069-82. [PMID: 19637277 DOI: 10.1002/syn.20693] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 4.3] [Reference Citation Analysis]
85 McKenna JT, Yang C, Franciosi S, Winston S, Abarr KK, Rigby MS, Yanagawa Y, McCarley RW, Brown RE. Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J Comp Neurol 2013;521:1225-50. [PMID: 23254904 DOI: 10.1002/cne.23290] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
86 Mascagni F, McDonald AJ. Parvalbumin-immunoreactive neurons and GABAergic neurons of the basal forebrain project to the rat basolateral amygdala. Neuroscience 2009;160:805-12. [PMID: 19285116 DOI: 10.1016/j.neuroscience.2009.02.077] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
87 Huang B, Qian Z, Wang Z, Zhang J, Chen K, Xu T, Wang J, Cechetto DF, Zhao Z, Wu H. Fluctuation of primary motor cortex excitability during cataplexy in narcolepsy. Ann Clin Transl Neurol 2019;6:210-21. [PMID: 30847354 DOI: 10.1002/acn3.670] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Raver SM, Lin SC. Basal forebrain motivational salience signal enhances cortical processing and decision speed. Front Behav Neurosci 2015;9:277. [PMID: 26528157 DOI: 10.3389/fnbeh.2015.00277] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
89 Calva CB, Fayyaz H, Fadel JR. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci 2019;11:362. [PMID: 32038222 DOI: 10.3389/fnagi.2019.00362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
90 Herrero JL, Gieselmann MA, Thiele A. Muscarinic and Nicotinic Contribution to Contrast Sensitivity of Macaque Area V1 Neurons. Front Neural Circuits 2017;11:106. [PMID: 29311843 DOI: 10.3389/fncir.2017.00106] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
91 Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, Whitaker LR, McPherson KB, Bossert JM, Shaham Y, Hope BT. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories. J Neurosci 2016;36:6691-703. [PMID: 27335401 DOI: 10.1523/JNEUROSCI.0140-16.2016] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 10.4] [Reference Citation Analysis]
92 Criado JR, Wills DN, Walker BM, Ehlers CL. Effects of adolescent ethanol exposure on sleep in adult rats. Alcohol 2008;42:631-9. [PMID: 18922666 DOI: 10.1016/j.alcohol.2008.08.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
93 Proulx É, Suri D, Heximer SP, Vaidya VA, Lambe EK. Early stress prevents the potentiation of muscarinic excitation by calcium release in adult prefrontal cortex. Biol Psychiatry 2014;76:315-23. [PMID: 24315552 DOI: 10.1016/j.biopsych.2013.10.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
94 Deurveilher S, Semba K. Basal forebrain regulation of cortical activity and sleep-wake states: Roles of cholinergic and non-cholinergic neurons: Basal forebrain and sleep/wake states. Sleep and Biological Rhythms 2011;9:65-70. [DOI: 10.1111/j.1479-8425.2010.00465.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
95 Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019;13:24. [PMID: 31031601 DOI: 10.3389/fncir.2019.00024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
96 Robinson-Drummer PA, Heroux NA, Stanton ME. Antagonism of muscarinic acetylcholine receptors in medial prefrontal cortex disrupts the context preexposure facilitation effect. Neurobiol Learn Mem 2017;143:27-35. [PMID: 28411153 DOI: 10.1016/j.nlm.2017.04.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
97 Olcese U, Bos JJ, Vinck M, Lankelma JV, van Mourik-Donga LB, Schlumm F, Pennartz CM. Spike-Based Functional Connectivity in Cerebral Cortex and Hippocampus: Loss of Global Connectivity Is Coupled to Preservation of Local Connectivity During Non-REM Sleep. J Neurosci 2016;36:7676-92. [PMID: 27445145 DOI: 10.1523/JNEUROSCI.4201-15.2016] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 5.2] [Reference Citation Analysis]
98 Deurveilher S, Ryan N, Burns J, Semba K. Social and environmental contexts modulate sleep deprivation-induced c-Fos activation in rats. Behav Brain Res 2013;256:238-49. [PMID: 23973763 DOI: 10.1016/j.bbr.2013.08.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
99 Pernía-Andrade AJ, Wenger N, Esposito MS, Tovote P. Circuits for State-Dependent Modulation of Locomotion. Front Hum Neurosci 2021;15:745689. [PMID: 34858153 DOI: 10.3389/fnhum.2021.745689] [Reference Citation Analysis]
100 Hawryluk JM, Ferrari LL, Keating SA, Arrigoni E. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons. J Neurophysiol 2012;107:2769-81. [PMID: 22357797 DOI: 10.1152/jn.00528.2011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
101 Lin SC, Brown RE, Hussain Shuler MG, Petersen CC, Kepecs A. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition. J Neurosci 2015;35:13896-903. [PMID: 26468190 DOI: 10.1523/JNEUROSCI.2590-15.2015] [Cited by in Crossref: 72] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
102 Carruthers SP, Gurvich CT, Rossell SL. The muscarinic system, cognition and schizophrenia. Neurosci Biobehav Rev 2015;55:393-402. [PMID: 26003527 DOI: 10.1016/j.neubiorev.2015.05.011] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 8.4] [Reference Citation Analysis]
103 Herrera-Rincon C, Panetsos F. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex. Front Cell Neurosci 2014;8:385. [PMID: 25452715 DOI: 10.3389/fncel.2014.00385] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
104 Rubin BR, Milner TA, Pickel VM, Coleman CG, Marques-Lopes J, Van Kempen TA, Kazim SF, McEwen BS, Gray JD, Pereira AC. Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia. Exp Neurol 2020;325:113075. [PMID: 31837319 DOI: 10.1016/j.expneurol.2019.113075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
105 Bhattacharyya A, Veit J, Kretz R, Bondar I, Rainer G. Basal forebrain activation controls contrast sensitivity in primary visual cortex. BMC Neurosci 2013;14:55. [PMID: 23679191 DOI: 10.1186/1471-2202-14-55] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
106 Zaborszky L, van den Pol A, Gyengesi E. The Basal Forebrain Cholinergic Projection System in Mice. The Mouse Nervous System. Elsevier; 2012. pp. 684-718. [DOI: 10.1016/b978-0-12-369497-3.10028-7] [Cited by in Crossref: 71] [Article Influence: 7.1] [Reference Citation Analysis]
107 Yang D, Günter R, Qi G, Radnikow G, Feldmeyer D. Muscarinic and Nicotinic Modulation of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific. Cereb Cortex 2020;30:3528-42. [PMID: 32026946 DOI: 10.1093/cercor/bhz324] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
108 Proulx E, Piva M, Tian MK, Bailey CD, Lambe EK. Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex. Cell Mol Life Sci 2014;71:1225-44. [PMID: 24122021 DOI: 10.1007/s00018-013-1481-3] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
109 Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015;6:22. [PMID: 25717303 DOI: 10.3389/fphys.2015.00022] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 7.7] [Reference Citation Analysis]
110 Zhang ZW, Kang JI, Vaucher E. Axonal varicosity density as an index of local neuronal interactions. PLoS One 2011;6:e22543. [PMID: 21811630 DOI: 10.1371/journal.pone.0022543] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
111 Kim JH, Jung AH, Jeong D, Choi I, Kim K, Shin S, Kim SJ, Lee SH. Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J Neurosci 2016;36:5314-27. [PMID: 27170128 DOI: 10.1523/JNEUROSCI.4333-15.2016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
112 Wang J, Li J, Yang Q, Xie YK, Wen YL, Xu ZZ, Li Y, Xu T, Wu ZY, Duan S, Xu H. Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons. Proc Natl Acad Sci U S A 2021;118:e2019295118. [PMID: 33563763 DOI: 10.1073/pnas.2019295118] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
113 Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015;6:135. [PMID: 26124745 DOI: 10.3389/fneur.2015.00135] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
114 Coleman LG Jr, Crews FT, Vetreno RP. The persistent impact of adolescent binge alcohol on adult brain structural, cellular, and behavioral pathology: A role for the neuroimmune system and epigenetics. Int Rev Neurobiol 2021;160:1-44. [PMID: 34696871 DOI: 10.1016/bs.irn.2021.08.001] [Reference Citation Analysis]
115 Caputi A, Melzer S, Michael M, Monyer H. The long and short of GABAergic neurons. Curr Opin Neurobiol 2013;23:179-86. [PMID: 23394773 DOI: 10.1016/j.conb.2013.01.021] [Cited by in Crossref: 95] [Cited by in F6Publishing: 89] [Article Influence: 10.6] [Reference Citation Analysis]
116 Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN Biochem 2012;2012:262941. [PMID: 25969754 DOI: 10.5402/2012/262941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
117 Cusmano DM, Mong JA. In utero exposure to valproic acid changes sleep in juvenile rats: a model for sleep disturbances in autism. Sleep 2014;37:1489-99. [PMID: 25142574 DOI: 10.5665/sleep.3998] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
118 Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010;68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Cited by in Crossref: 775] [Cited by in F6Publishing: 639] [Article Influence: 70.5] [Reference Citation Analysis]
119 Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021;383:507-24. [PMID: 33355709 DOI: 10.1007/s00441-020-03365-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
120 Chaves-Coira I, Martín-Cortecero J, Nuñez A, Rodrigo-Angulo ML. Basal Forebrain Nuclei Display Distinct Projecting Pathways and Functional Circuits to Sensory Primary and Prefrontal Cortices in the Rat. Front Neuroanat 2018;12:69. [PMID: 30158859 DOI: 10.3389/fnana.2018.00069] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
121 Cobb S, Lawrence JJ. Neuromodulation of Hippocampal Cells and Circuits. In: Cutsuridis V, Graham B, Cobb S, Vida I, editors. Hippocampal Microcircuits. New York: Springer; 2010. pp. 187-246. [DOI: 10.1007/978-1-4419-0996-1_7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
122 Wallace T, Bertrand D. Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochemical Pharmacology 2013;85:1713-20. [DOI: 10.1016/j.bcp.2013.04.001] [Cited by in Crossref: 80] [Cited by in F6Publishing: 79] [Article Influence: 8.9] [Reference Citation Analysis]
123 Alexander KS, Brooks JM, Sarter M, Bruno JP. Disruption of mesolimbic regulation of prefrontal cholinergic transmission in an animal model of schizophrenia and normalization by chronic clozapine treatment. Neuropsychopharmacology 2009;34:2710-20. [PMID: 19693002 DOI: 10.1038/npp.2009.105] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
124 Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, García Del Molino LC, Fitzgerald G, Ram K, He M, Levine JM, Mitra P, Huang ZJ, Wang XJ, Osten P. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism. Cell 2017;171:456-469.e22. [PMID: 28985566 DOI: 10.1016/j.cell.2017.09.020] [Cited by in Crossref: 138] [Cited by in F6Publishing: 105] [Article Influence: 27.6] [Reference Citation Analysis]
125 Janiesch PC, Krüger HS, Pöschel B, Hanganu-Opatz IL. Cholinergic control in developing prefrontal-hippocampal networks. J Neurosci 2011;31:17955-70. [PMID: 22159110 DOI: 10.1523/JNEUROSCI.2644-11.2011] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
126 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
127 Cai P, Chen L, Guo YR, Yao J, Chen HY, Lu YP, Huang SN, He P, Zheng ZH, Liu JY, Chen J, Hu LH, Chen SY, Huang LT, Chen GQ, Tang WT, Su WK, Li HY, Wang WX, Yu CX. Basal forebrain GABAergic neurons promote arousal and predatory hunting. Neuropharmacology 2020;180:108299. [PMID: 32916145 DOI: 10.1016/j.neuropharm.2020.108299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Longoni G, Rocca MA, Pagani E, Riccitelli GC, Colombo B, Rodegher M, Falini A, Comi G, Filippi M. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct 2015;220:435-44. [DOI: 10.1007/s00429-013-0665-9] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 6.4] [Reference Citation Analysis]
129 Yang C, McKenna JT, Zant JC, Winston S, Basheer R, Brown RE. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J Neurosci 2014;34:2832-44. [PMID: 24553925 DOI: 10.1523/JNEUROSCI.3235-13.2014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
130 Grupe M, Grunnet M, Bastlund JF, Jensen AA. Targeting α4β2 Nicotinic Acetylcholine Receptors in Central Nervous System Disorders: Perspectives on Positive Allosteric Modulation as a Therapeutic Approach. Basic Clin Pharmacol Toxicol 2015;116:187-200. [DOI: 10.1111/bcpt.12361] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
131 Kostin A, Stenberg D, Porkka-Heiskanen T. Effect of sleep deprivation on multi-unit discharge activity of basal forebrain. J Sleep Res 2010;19:269-79. [PMID: 20040037 DOI: 10.1111/j.1365-2869.2009.00791.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
132 Henny P, Brown MT, Micklem BR, Magill PJ, Bolam JP. Stereological and ultrastructural quantification of the afferent synaptome of individual neurons. Brain Struct Funct 2014;219:631-40. [PMID: 23479177 DOI: 10.1007/s00429-013-0523-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
133 Fox J, Thodeson DM, Dolce AM. Nicotine: A Targeted Therapy for Epilepsy Due to nAChR Gene Variants. J Child Neurol 2021;36:371-7. [PMID: 33284031 DOI: 10.1177/0883073820974851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity. Cereb Cortex 2019;29:42-53. [PMID: 29161383 DOI: 10.1093/cercor/bhx302] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
135 Mak-McCully RA, Deiss SR, Rosen BQ, Jung KY, Sejnowski TJ, Bastuji H, Rey M, Cash SS, Bazhenov M, Halgren E. Synchronization of isolated downstates (K-complexes) may be caused by cortically-induced disruption of thalamic spindling. PLoS Comput Biol 2014;10:e1003855. [PMID: 25255217 DOI: 10.1371/journal.pcbi.1003855] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
136 Richter N, David L, Grothe MJ, Teipel S, Dietlein M, Tittgemeyer M, Neumaier B, Fink GR, Onur OA, Kukolja J. Age and Anterior Basal Forebrain Volume Predict the Cholinergic Deficit in Patients with Mild Cognitive Impairment due to Alzheimer’s Disease. JAD 2022. [DOI: 10.3233/jad-210261] [Reference Citation Analysis]
137 Kimura R, Safari MS, Mirnajafi-Zadeh J, Kimura R, Ebina T, Yanagawa Y, Sohya K, Tsumoto T. Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits. J Neurosci 2014;34:10122-33. [PMID: 25057213 DOI: 10.1523/JNEUROSCI.0863-14.2014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
138 Laperchia C, Imperatore R, Azeez IA, Del Gallo F, Bertini G, Grassi-Zucconi G, Cristino L, Bentivoglio M. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct Funct 2017;222:3847-59. [PMID: 28669028 DOI: 10.1007/s00429-017-1466-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
139 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
140 Li Y, Chen L, Zhu D, Chen Y, Qin W, Cui J. Propofol downregulates the activity of glutamatergic neurons in the basal forebrain via affecting intrinsic membrane properties and postsynaptic GABAARs. Neuroreport 2020;31:1242-8. [PMID: 33075002 DOI: 10.1097/WNR.0000000000001540] [Reference Citation Analysis]
141 Schreiner CE, Froemke RC, Atencio CA. Spectral Processing in Auditory Cortex. In: Winer JA, Schreiner CE, editors. The Auditory Cortex. Boston: Springer US; 2011. pp. 275-308. [DOI: 10.1007/978-1-4419-0074-6_13] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
142 Jiang L, López-Hernández GY, Lederman J, Talmage DA, Role LW. Optogenetic studies of nicotinic contributions to cholinergic signaling in the central nervous system. Rev Neurosci 2014;25:755-71. [PMID: 25051276 DOI: 10.1515/revneuro-2014-0032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
143 Frank MG. Circadian Regulation of Synaptic Plasticity. Biology (Basel) 2016;5:E31. [PMID: 27420105 DOI: 10.3390/biology5030031] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
144 Unal G, Joshi A, Viney TJ, Kis V, Somogyi P. Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. J Neurosci 2015;35:15812-26. [PMID: 26631464 DOI: 10.1523/JNEUROSCI.2639-15.2015] [Cited by in Crossref: 71] [Cited by in F6Publishing: 44] [Article Influence: 11.8] [Reference Citation Analysis]
145 Calva CB, Fayyaz H, Fadel JR. Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1). J Neurochem 2018;145:232-44. [PMID: 29250792 DOI: 10.1111/jnc.14279] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
146 Radnikow G, Feldmeyer D. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex. Front Neuroanat 2018;12:1. [PMID: 29440997 DOI: 10.3389/fnana.2018.00001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
147 Harrison TC, Pinto L, Brock JR, Dan Y. Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors. Front Neural Circuits 2016;10:36. [PMID: 27242444 DOI: 10.3389/fncir.2016.00036] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
148 Castillo-Ruiz A, Nixon JP, Smale L, Nunez AA. Neural activation in arousal and reward areas of the brain in day-active and night-active grass rats. Neuroscience 2010;165:337-49. [PMID: 19837140 DOI: 10.1016/j.neuroscience.2009.10.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
149 Kondo H, Zaborszky L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J Comp Neurol 2016;524:2503-15. [PMID: 26780730 DOI: 10.1002/cne.23967] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
150 Zant JC, Rozov S, Wigren HK, Panula P, Porkka-Heiskanen T. Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. J Neurosci 2012;32:13244-54. [PMID: 22993440 DOI: 10.1523/JNEUROSCI.5933-11.2012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
151 Bloem B, Schoppink L, Rotaru DC, Faiz A, Hendriks P, Mansvelder HD, van de Berg WD, Wouterlood FG. Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J Neurosci 2014;34:16234-46. [PMID: 25471564 DOI: 10.1523/JNEUROSCI.3011-14.2014] [Cited by in Crossref: 65] [Cited by in F6Publishing: 43] [Article Influence: 9.3] [Reference Citation Analysis]
152 Ng M, Pavlova M. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res Treat 2013;2013:932790. [PMID: 23853720 DOI: 10.1155/2013/932790] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
153 Zielinski MR, Dunbrasky DL, Taishi P, Souza G, Krueger JM. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice. Sleep 2013;36:1227-38, 1238A. [PMID: 23904683 DOI: 10.5665/sleep.2892] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 4.8] [Reference Citation Analysis]
154 Bennett C, Arroyo S, Berns D, Hestrin S. Mechanisms generating dual-component nicotinic EPSCs in cortical interneurons. J Neurosci 2012;32:17287-96. [PMID: 23197720 DOI: 10.1523/JNEUROSCI.3565-12.2012] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 6.9] [Reference Citation Analysis]
155 Cui Y, Lv G, Jin S, Peng J, Yuan J, He X, Gong H, Xu F, Xu T, Li H. A Central Amygdala-Substantia Innominata Neural Circuitry Encodes Aversive Reinforcement Signals. Cell Rep 2017;21:1770-82. [PMID: 29141212 DOI: 10.1016/j.celrep.2017.10.062] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
156 Aracri P, Consonni S, Morini R, Perrella M, Rodighiero S, Amadeo A, Becchetti A. Tonic modulation of GABA release by nicotinic acetylcholine receptors in layer V of the murine prefrontal cortex. Cereb Cortex 2010;20:1539-55. [PMID: 19812239 DOI: 10.1093/cercor/bhp214] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 3.0] [Reference Citation Analysis]
157 Bueno-Junior LS, Simon NW, Wegener MA, Moghaddam B. Repeated Nicotine Strengthens Gamma Oscillations in the Prefrontal Cortex and Improves Visual Attention. Neuropsychopharmacology 2017;42:1590-8. [PMID: 28128335 DOI: 10.1038/npp.2017.15] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
158 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
159 Umezu T, Sano T, Hayashi J. l-Menthol increases extracellular dopamine and c-Fos-like immunoreactivity in the dorsal striatum, and promotes ambulatory activity in mice. PLoS One 2021;16:e0260713. [PMID: 34847183 DOI: 10.1371/journal.pone.0260713] [Reference Citation Analysis]
160 Micheva KD, Wolman D, Mensh BD, Pax E, Buchanan J, Smith SJ, Bock DD. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. Elife. 2016;5. [PMID: 27383052 DOI: 10.7554/elife.15784] [Cited by in Crossref: 125] [Cited by in F6Publishing: 86] [Article Influence: 20.8] [Reference Citation Analysis]
161 Hedrick T, Waters J. Physiological properties of cholinergic and non-cholinergic magnocellular neurons in acute slices from adult mouse nucleus basalis. PLoS One 2010;5:e11046. [PMID: 20548784 DOI: 10.1371/journal.pone.0011046] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
162 Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience 2017;352:249-61. [PMID: 28411158 DOI: 10.1016/j.neuroscience.2017.04.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
163 Onslow AC, Jones MW, Bogacz R. A canonical circuit for generating phase-amplitude coupling. PLoS One 2014;9:e102591. [PMID: 25136855 DOI: 10.1371/journal.pone.0102591] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 6.1] [Reference Citation Analysis]
164 López-Jury L, Mannel A, García-Rosales F, Hechavarria JC. Modified synaptic dynamics predict neural activity patterns in an auditory field within the frontal cortex. Eur J Neurosci 2020;51:1011-25. [PMID: 31630441 DOI: 10.1111/ejn.14600] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
165 Madhusudan A, Sidler C, Knuesel I. Accumulation of reelin-positive plaques is accompanied by a decline in basal forebrain projection neurons during normal aging. Eur J Neurosci 2009;30:1064-76. [PMID: 19735296 DOI: 10.1111/j.1460-9568.2009.06884.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
166 Kalmbach A, Hedrick T, Waters J. Selective optogenetic stimulation of cholinergic axons in neocortex. J Neurophysiol 2012;107:2008-19. [PMID: 22236708 DOI: 10.1152/jn.00870.2011] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 6.5] [Reference Citation Analysis]
167 Avila I, Lin SC. Distinct neuronal populations in the basal forebrain encode motivational salience and movement. Front Behav Neurosci 2014;8:421. [PMID: 25538586 DOI: 10.3389/fnbeh.2014.00421] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
168 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
169 Lu NN, Tan C, Sun NH, Shao LX, Liu XX, Gao YP, Tao RR, Jiang Q, Wang CK, Huang JY, Zhao K, Wang GF, Liu ZR, Fukunaga K, Lu YM, Han F. Cholinergic Grb2-Associated-Binding Protein 1 Regulates Cognitive Function. Cereb Cortex 2018;28:2391-404. [PMID: 28591834 DOI: 10.1093/cercor/bhx141] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
170 Jones BE. The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Med 2018;49:14-9. [PMID: 29983241 DOI: 10.1016/j.sleep.2018.05.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
171 Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2015;124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 7.0] [Reference Citation Analysis]
172 Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020;10:10696. [PMID: 32612119 DOI: 10.1038/s41598-020-67276-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 7.5] [Reference Citation Analysis]
173 Kolisnyk B, Al-Onaizi MA, Hirata PH, Guzman MS, Nikolova S, Barbash S, Soreq H, Bartha R, Prado MA, Prado VF. Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci 2013;33:14908-20. [PMID: 24027290 DOI: 10.1523/JNEUROSCI.1933-13.2013] [Cited by in Crossref: 44] [Cited by in F6Publishing: 25] [Article Influence: 4.9] [Reference Citation Analysis]
174 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
175 Bostanciklioğlu M. Unexpected awakenings in severe dementia from case reports to laboratory. Alzheimers Dement 2021;17:125-36. [PMID: 33064369 DOI: 10.1002/alz.12162] [Reference Citation Analysis]
176 Nguyen DP, Lin SC. A frontal cortex event-related potential driven by the basal forebrain. Elife 2014;3:e02148. [PMID: 24714497 DOI: 10.7554/eLife.02148] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
177 Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R. The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 2011;116:260-72. [PMID: 21062286 DOI: 10.1111/j.1471-4159.2010.07100.x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 4.4] [Reference Citation Analysis]
178 Arnal PJ, Sauvet F, Leger D, van Beers P, Bayon V, Bougard C, Rabat A, Millet GY, Chennaoui M. Benefits of Sleep Extension on Sustained Attention and Sleep Pressure Before and During Total Sleep Deprivation and Recovery. Sleep 2015;38:1935-43. [PMID: 26194565 DOI: 10.5665/sleep.5244] [Cited by in Crossref: 65] [Cited by in F6Publishing: 55] [Article Influence: 9.3] [Reference Citation Analysis]
179 González Montoro AM, Cao R, Espinosa N, Cudeiro J, Mariño J. Functional two-way analysis of variance and bootstrap methods for neural synchrony analysis. BMC Neurosci 2014;15:96. [PMID: 25112283 DOI: 10.1186/1471-2202-15-96] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
180 Thomsen MS, Hay-Schmidt A, Hansen HH, Mikkelsen JD. Distinct neural pathways mediate α7 nicotinic acetylcholine receptor-dependent activation of the forebrain. Cereb Cortex 2010;20:2092-102. [PMID: 20051354 DOI: 10.1093/cercor/bhp283] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
181 Lee SH, Dan Y. Neuromodulation of brain states. Neuron 2012;76:209-22. [PMID: 23040816 DOI: 10.1016/j.neuron.2012.09.012] [Cited by in Crossref: 323] [Cited by in F6Publishing: 271] [Article Influence: 32.3] [Reference Citation Analysis]
182 Dautan D, Hacioğlu Bay H, Bolam JP, Gerdjikov TV, Mena-Segovia J. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis. Front Neuroanat 2016;10:1. [PMID: 26834571 DOI: 10.3389/fnana.2016.00001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 7.5] [Reference Citation Analysis]
183 Clarkson C, Juíz JM, Merchán MA. Long-term regulation in calretinin staining in the rat inferior colliculus after unilateral auditory cortical ablation. J Comp Neurol 2010;518:4261-76. [PMID: 20878787 DOI: 10.1002/cne.22453] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]