BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW. Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 2008;27:352-63. [PMID: 18215233 DOI: 10.1111/j.1460-9568.2008.06024.x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014;34:4708-27. [PMID: 24672016 DOI: 10.1523/JNEUROSCI.2617-13.2014] [Cited by in Crossref: 159] [Cited by in F6Publishing: 93] [Article Influence: 19.9] [Reference Citation Analysis]
2 Wang YQ, Liu WY, Li L, Qu WM, Huang ZL. Neural circuitry underlying REM sleep: A review of the literature and current concepts. Prog Neurobiol 2021;204:102106. [PMID: 34144122 DOI: 10.1016/j.pneurobio.2021.102106] [Reference Citation Analysis]
3 Yang C, Brown RE. The cholinergic agonist carbachol increases the frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse. Neuroscience 2014;258:62-73. [PMID: 24231737 DOI: 10.1016/j.neuroscience.2013.11.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
4 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
5 Vanini G, Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. Sleep 2013;36:337-43. [PMID: 23450652 DOI: 10.5665/sleep.2444] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
6 Wang X, Liu C, Wang X, Gao F, Zhan R. Density and neurochemical profiles of neuronal nitric oxide synthase-expressing interneuron in the mouse basolateral amygdala. Brain Research 2017;1663:106-13. [DOI: 10.1016/j.brainres.2017.02.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wang Y, Kakizaki T, Sakagami H, Saito K, Ebihara S, Kato M, Hirabayashi M, Saito Y, Furuya N, Yanagawa Y. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse. Neuroscience 2009;164:1031-43. [PMID: 19766173 DOI: 10.1016/j.neuroscience.2009.09.010] [Cited by in Crossref: 80] [Cited by in F6Publishing: 88] [Article Influence: 6.2] [Reference Citation Analysis]
8 Wei D, Yang F, Wang Y, Yang F, Wu C, Wu SX, Jiang W. Degeneration and regeneration of GABAergic interneurons in the dentate gyrus of adult mice in experimental models of epilepsy. CNS Neurosci Ther 2015;21:52-60. [PMID: 25272022 DOI: 10.1111/cns.12330] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
9 Kohlmeier KA, Kristiansen U. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state. Neuroscience 2010;171:812-29. [PMID: 20884335 DOI: 10.1016/j.neuroscience.2010.09.034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
10 Frauscher B, Gschliesser V, Brandauer E, Schönwald SV, Falkenstetter T, Ehrmann L, Tokmak I, Poewe W, Högl B. Motor disturbances during non-REM and REM sleep in narcolepsy-cataplexy: a video-polysomnographic analysis: Motor disturbances during sleep in narcolepsy. Journal of Sleep Research 2011;20:514-21. [DOI: 10.1111/j.1365-2869.2011.00906.x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
11 Diniz Behn CG, Ananthasubramaniam A, Booth V. Contrasting Existence and Robustness of REM/Non-REM Cycling in Physiologically Based Models of REM Sleep Regulatory Networks. SIAM J Appl Dyn Syst 2013;12:279-314. [DOI: 10.1137/120876939] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
12 Cissé Y, Ishibashi M, Jost J, Toossi H, Mainville L, Adamantidis A, Leonard CS, Jones BE. Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice. J Neurosci 2020;40:5970-89. [PMID: 32576622 DOI: 10.1523/JNEUROSCI.2875-19.2020] [Reference Citation Analysis]
13 Zhao C, Eisinger B, Gammie SC. Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 2013;8:e73750. [PMID: 23967349 DOI: 10.1371/journal.pone.0073750] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 4.4] [Reference Citation Analysis]
14 Maguire EP, Mitchell EA, Greig SJ, Corteen N, Balfour DJ, Swinny JD, Lambert JJ, Belelli D. Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol. Neuropsychopharmacology 2014;39:1232-44. [PMID: 24264816 DOI: 10.1038/npp.2013.326] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
15 Gao S, Proekt A, Renier N, Calderon DP, Pfaff DW. Activating an anterior nucleus gigantocellularis subpopulation triggers emergence from pharmacologically-induced coma in rodents. Nat Commun 2019;10:2897. [PMID: 31263107 DOI: 10.1038/s41467-019-10797-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
16 Boucetta S, Jones BE. Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 2009;29:4664-74. [PMID: 19357291 DOI: 10.1523/JNEUROSCI.5502-08.2009] [Cited by in Crossref: 75] [Cited by in F6Publishing: 41] [Article Influence: 5.8] [Reference Citation Analysis]
17 Behn CGD, Booth V. A Fast-Slow Analysis of the Dynamics of REM Sleep. SIAM J Appl Dyn Syst 2012;11:212-42. [DOI: 10.1137/110832823] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
18 Wang P, Li H, Barde S, Zhang MD, Sun J, Wang T, Zhang P, Luo H, Wang Y, Yang Y, Wang C, Svenningsson P, Theodorsson E, Hökfelt TG, Xu ZQ. Depression-like behavior in rat: Involvement of galanin receptor subtype 1 in the ventral periaqueductal gray. Proc Natl Acad Sci U S A 2016;113:E4726-35. [PMID: 27457954 DOI: 10.1073/pnas.1609198113] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
19 Liu Q, Emadi S, Shen JX, Sierks MR, Wu J. Human α4β2 nicotinic acetylcholine receptor as a novel target of oligomeric α-synuclein. PLoS One 2013;8:e55886. [PMID: 23437071 DOI: 10.1371/journal.pone.0055886] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
20 Vanini G, Lydic R, Baghdoyan HA. GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep 2012;35:1325-34. [PMID: 23024430 DOI: 10.5665/sleep.2106] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
21 Vanini G, Wathen BL, Lydic R, Baghdoyan HA. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J Neurosci 2011;31:2649-56. [PMID: 21325533 DOI: 10.1523/JNEUROSCI.5674-10.2011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
22 Bang SJ, Commons KG. Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67-GFP knock-in mice. J Comp Neurol 2012;520:4157-67. [PMID: 22605640 DOI: 10.1002/cne.23146] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 4.8] [Reference Citation Analysis]
23 Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A 2014;111:E5007-15. [PMID: 25368177 DOI: 10.1073/pnas.1413210111] [Cited by in Crossref: 188] [Cited by in F6Publishing: 190] [Article Influence: 23.5] [Reference Citation Analysis]
24 Challis C, Boulden J, Veerakumar A, Espallergues J, Vassoler FM, Pierce RC, Beck SG, Berton O. Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J Neurosci 2013;33:13978-88, 13988a. [PMID: 23986235 DOI: 10.1523/JNEUROSCI.2383-13.2013] [Cited by in Crossref: 122] [Cited by in F6Publishing: 67] [Article Influence: 13.6] [Reference Citation Analysis]
25 van Brederode JF, Yanagawa Y, Berger AJ. GAD67-GFP+ neurons in the Nucleus of Roller: a possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties. J Neurophysiol 2011;105:235-48. [PMID: 21047932 DOI: 10.1152/jn.00493.2010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
26 Bolneo E, Chau PYS, Noakes PG, Bellingham MC. Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes. IJMS 2022;23:7965. [DOI: 10.3390/ijms23147965] [Reference Citation Analysis]
27 Prestigio C, Ferrante D, Valente P, Casagrande S, Albanesi E, Yanagawa Y, Benfenati F, Baldelli P. Spike-Related Electrophysiological Identification of Cultured Hippocampal Excitatory and Inhibitory Neurons. Mol Neurobiol 2019;56:6276-92. [DOI: 10.1007/s12035-019-1506-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
28 Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol 2011;2:14. [PMID: 21516258 DOI: 10.3389/fneur.2011.00014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
29 Jennum P, Frandsen R, Knudsen S. Characteristics of rapid eye movement sleep behavior disorder in narcolepsy: REM sleep behavior and narcolepsy. Sleep and Biological Rhythms 2013;11:65-74. [DOI: 10.1111/j.1479-8425.2012.00556.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
30 Booth V, Diniz Behn CG. Physiologically-based modeling of sleep-wake regulatory networks. Math Biosci 2014;250:54-68. [PMID: 24530893 DOI: 10.1016/j.mbs.2014.01.012] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
31 Diniz Behn CG, Booth V. Simulating Microinjection Experiments in a Novel Model of the Rat Sleep-Wake Regulatory Network. Journal of Neurophysiology 2010;103:1937-53. [DOI: 10.1152/jn.00795.2009] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
32 McKenna JT, Yang C, Franciosi S, Winston S, Abarr KK, Rigby MS, Yanagawa Y, McCarley RW, Brown RE. Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J Comp Neurol 2013;521:1225-50. [PMID: 23254904 DOI: 10.1002/cne.23290] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
33 Hermanstyne TO, Kihira Y, Misono K, Deitchler A, Yanagawa Y, Misonou H. Immunolocalization of the voltage-gated potassium channel Kv2.2 in GABAergic neurons in the basal forebrain of rats and mice. J Comp Neurol 2010;518:4298-310. [PMID: 20853508 DOI: 10.1002/cne.22457] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
34 Heister DS, Hayar A, Garcia-Rill E. Cholinergic modulation of GABAergic and glutamatergic transmission in the dorsal subcoeruleus: mechanisms for REM sleep control. Sleep 2009;32:1135-47. [PMID: 19750918 DOI: 10.1093/sleep/32.9.1135] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
35 Gotts J, Atkinson L, Yanagawa Y, Deuchars J, Deuchars SA. Co-expression of GAD67 and choline acetyltransferase in neurons in the mouse spinal cord: A focus on lamina X. Brain Res 2016;1646:570-9. [PMID: 27378584 DOI: 10.1016/j.brainres.2016.07.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
36 Nullmeier S, Elmers C, D'Hanis W, Sandhu KVK, Stork O, Yanagawa Y, Panther P, Schwegler H. Glutamic acid decarboxylase 67 haplodeficiency in mice: consequences of postweaning social isolation on behavior and changes in brain neurochemical systems. Brain Struct Funct 2020;225:1719-42. [PMID: 32514634 DOI: 10.1007/s00429-020-02087-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Klueva J, Lima AD, Meis S, Voigt T, Munsch T. Hyperpolarization-activated cation current contributes to spontaneous network activity in developing neocortical cultures. Neurosignals 2012;20:35-47. [PMID: 22094222 DOI: 10.1159/000330813] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
38 Weng FJ, Williams RH, Hawryluk JM, Lu J, Scammell TE, Saper CB, Arrigoni E. Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord. J Physiol 2014;592:1601-17. [PMID: 24344163 DOI: 10.1113/jphysiol.2013.261800] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
39 Chen T, Wang X, Qu J, Wang W, Zhang T, Yanagawa Y, Wu S, Li Y. Neurokinin-1 Receptor-Expressing Neurons That Contain Serotonin and Gamma-Aminobutyric Acid in the Rat Rostroventromedial Medulla Are Involved in Pain Processing. The Journal of Pain 2013;14:778-92. [DOI: 10.1016/j.jpain.2013.02.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
40 Soiza-Reilly M, Meye FJ, Olusakin J, Telley L, Petit E, Chen X, Mameli M, Jabaudon D, Sze JY, Gaspar P. SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Mol Psychiatry 2019;24:726-45. [PMID: 30279456 DOI: 10.1038/s41380-018-0260-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 8.5] [Reference Citation Analysis]
41 Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP. GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 2009;515:397-408. [PMID: 19459217 DOI: 10.1002/cne.22065] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 4.7] [Reference Citation Analysis]
42 Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015;6:135. [PMID: 26124745 DOI: 10.3389/fneur.2015.00135] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
43 Kalogiannis M, Hsu E, Willie JT, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS. Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice. PLoS One 2011;6:e18697. [PMID: 21533254 DOI: 10.1371/journal.pone.0018697] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 2.8] [Reference Citation Analysis]
44 Jin Y, Luo B, Su YY, Wang XX, Chen L, Wang M, Wang WW, Chen L. Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus. PLoS One 2015;10:e0126956. [PMID: 25962147 DOI: 10.1371/journal.pone.0126956] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
45 Costa MS, Born J, Claussen JC, Martinetz T. Modeling the effect of sleep regulation on a neural mass model. J Comput Neurosci 2016;41:15-28. [DOI: 10.1007/s10827-016-0602-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
46 Gocho Y, Sakai A, Yanagawa Y, Suzuki H, Saitow F. Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J Physiol Sci 2013;63:147-54. [PMID: 23275149 DOI: 10.1007/s12576-012-0250-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
47 Araragi N, Mlinar B, Baccini G, Gutknecht L, Lesch KP, Corradetti R. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis. Front Pharmacol 2013;4:97. [PMID: 23935583 DOI: 10.3389/fphar.2013.00097] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
48 Fleshner M, Booth V, Forger DB, Diniz Behn CG. Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. Philos Trans A Math Phys Eng Sci 2011;369:3855-83. [PMID: 21893532 DOI: 10.1098/rsta.2011.0085] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
49 Dimitrov EL, Yanagawa Y, Usdin TB. Forebrain GABAergic projections to locus coeruleus in mouse. J Comp Neurol 2013;521:2373-97. [PMID: 23296594 DOI: 10.1002/cne.23291] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
50 McNally JM, McCarley RW, McKenna JT, Yanagawa Y, Brown RE. Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience 2011;199:51-63. [PMID: 22027237 DOI: 10.1016/j.neuroscience.2011.10.015] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.0] [Reference Citation Analysis]
51 Boxwell AJ, Yanagawa Y, Travers SP, Travers JB. The μ-opioid receptor agonist DAMGO presynaptically suppresses solitary tract-evoked input to neurons in the rostral solitary nucleus. J Neurophysiol 2013;109:2815-26. [PMID: 23486207 DOI: 10.1152/jn.00711.2012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
52 Moreno-balandrn E, Garzn M, Bdalo C, Reinoso-surez F, de Andrs I. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. European Journal of Neuroscience 2008;28:331-41. [DOI: 10.1111/j.1460-9568.2008.06334.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
53 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
54 Gleit RD, Diniz Behn CG, Booth V. Modeling Interindividual Differences in Spontaneous Internal Desynchrony Patterns. J Biol Rhythms 2013;28:339-55. [DOI: 10.1177/0748730413504277] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
55 Liu Q, Huang Y, Shen J, Steffensen S, Wu J. Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides. BMC Neurosci 2012;13:155. [PMID: 23272676 DOI: 10.1186/1471-2202-13-155] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 4.4] [Reference Citation Analysis]
56 Chen L, McKenna JT, Leonard MZ, Yanagawa Y, McCarley RW, Brown RE. GAD67-GFP knock-in mice have normal sleep-wake patterns and sleep homeostasis. Neuroreport 2010;21:216-20. [PMID: 20051926 DOI: 10.1097/WNR.0b013e32833655c4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
57 Knudsen S, Gammeltoft S, Jennum PJ. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency. Brain 2010;133:568-79. [DOI: 10.1093/brain/awp320] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 6.6] [Reference Citation Analysis]
58 Vilela-costa HH, Spiacci A, Bissolli IG, Zangrossi H. A Shift in the Activation of Serotonergic and Non-serotonergic Neurons in the Dorsal Raphe Lateral Wings Subnucleus Underlies the Panicolytic-Like Effect of Fluoxetine in Rats. Mol Neurobiol 2019;56:6487-500. [DOI: 10.1007/s12035-019-1536-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
59 Harding A, Gonder U, Robinson SJ, Crean S, Singhrao SK. Exploring the Association between Alzheimer's Disease, Oral Health, Microbial Endocrinology and Nutrition. Front Aging Neurosci 2017;9:398. [PMID: 29249963 DOI: 10.3389/fnagi.2017.00398] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
60 Martin MM, McCarthy DM, Schatschneider C, Trupiano MX, Jones SK, Kalluri A, Bhide PG. Effects of Developmental Nicotine Exposure on Frontal Cortical GABA-to-Non-GABA Neuron Ratio and Novelty-Seeking Behavior. Cereb Cortex 2020;30:1830-42. [PMID: 31599922 DOI: 10.1093/cercor/bhz207] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
61 Brevig HN, Watson CJ, Lydic R, Baghdoyan HA. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness. Sleep 2010;33:1285-93. [PMID: 21061850 DOI: 10.1093/sleep/33.10.1285] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
62 Torterolo P, Sampogna S, Chase MH. MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 2009;1268:76-87. [PMID: 19269278 DOI: 10.1016/j.brainres.2009.02.055] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
63 Leonard CS, Kukkonen JP. Orexin/hypocretin receptor signalling: a functional perspective. Br J Pharmacol 2014;171:294-313. [PMID: 23848055 DOI: 10.1111/bph.12296] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 10.3] [Reference Citation Analysis]