BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Venkatraman ES. A permutation test to compare receiver operating characteristic curves. Biometrics. 2000;56:1134-1138. [PMID: 11129471 DOI: 10.1111/j.0006-341x.2000.01134.x] [Cited by in Crossref: 94] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. [PMID: 21414208 DOI: 10.1186/1471-2105-12-77] [Cited by in Crossref: 4417] [Cited by in F6Publishing: 3765] [Article Influence: 401.5] [Reference Citation Analysis]
2 Jin H, Lu Y. Permutation test for non-inferiority of the linear to the optimal combination of multiple tests. Stat Probab Lett 2009;79:664-9. [PMID: 20161260 DOI: 10.1016/j.spl.2008.10.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
3 Jang HJ, Song IH, Lee SH. Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images. Cancers (Basel) 2021;13:3811. [PMID: 34359712 DOI: 10.3390/cancers13153811] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Sampson DL, Fox BA, Yager TD, Bhide S, Cermelli S, McHugh LC, Seldon TA, Brandon RA, Sullivan E, Zimmerman JJ, Noursadeghi M, Brandon RB. A Four-Biomarker Blood Signature Discriminates Systemic Inflammation Due to Viral Infection Versus Other Etiologies. Sci Rep 2017;7:2914. [PMID: 28588308 DOI: 10.1038/s41598-017-02325-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
5 Cho KO, Jang HJ. Comparison of different input modalities and network structures for deep learning-based seizure detection. Sci Rep 2020;10:122. [PMID: 31924842 DOI: 10.1038/s41598-019-56958-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
6 Gong Z, Gu Y, Xiong K, Niu J, Zheng R, Su B, Fan L, Xie J. The Evaluation and Validation of Blood-Derived Novel Biomarkers for Precise and Rapid Diagnosis of Tuberculosis in Areas With High-TB Burden. Front Microbiol 2021;12:650567. [PMID: 34194403 DOI: 10.3389/fmicb.2021.650567] [Reference Citation Analysis]
7 Bhavsar NA, Gao A, Phelan M, Pagidipati NJ, Goldstein BA. Value of Neighborhood Socioeconomic Status in Predicting Risk of Outcomes in Studies That Use Electronic Health Record Data. JAMA Netw Open 2018;1:e182716. [PMID: 30646172 DOI: 10.1001/jamanetworkopen.2018.2716] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
8 Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018;8:3395. [PMID: 29467373 DOI: 10.1038/s41598-018-21758-3] [Cited by in Crossref: 220] [Cited by in F6Publishing: 158] [Article Influence: 55.0] [Reference Citation Analysis]
9 Ong ML, Youngstrom EA, Chua JJ, Halverson TF, Horwitz SM, Storfer-Isser A, Frazier TW, Fristad MA, Arnold LE, Phillips ML, Birmaher B, Kowatch RA, Findling RL; LAMS Group. Comparing the CASI-4R and the PGBI-10 M for Differentiating Bipolar Spectrum Disorders from Other Outpatient Diagnoses in Youth. J Abnorm Child Psychol 2017;45:611-23. [PMID: 27364346 DOI: 10.1007/s10802-016-0182-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Freeman K, Taylor-Phillips S, Willis BH, Ryan R, Clarke A. Test accuracy of faecal calprotectin for inflammatory bowel disease in UK primary care: a retrospective cohort study of the IMRD-UK data. BMJ Open 2021;11:e044177. [PMID: 33619196 DOI: 10.1136/bmjopen-2020-044177] [Reference Citation Analysis]
11 Du G, Lewis MM, Kanekar S, Sterling NW, He L, Kong L, Li R, Huang X. Combined Diffusion Tensor Imaging and Apparent Transverse Relaxation Rate Differentiate Parkinson Disease and Atypical Parkinsonism. AJNR Am J Neuroradiol 2017;38:966-72. [PMID: 28364007 DOI: 10.3174/ajnr.A5136] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
12 Zhao W, Hevener KE, White SW, Lee RE, Boyett JM. A statistical framework to evaluate virtual screening. BMC Bioinformatics 2009;10:225. [PMID: 19619306 DOI: 10.1186/1471-2105-10-225] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 5.1] [Reference Citation Analysis]
13 Kobayashi S, Hiwasa T, Ishige T, Kano M, Hoshino T, Rahmutulla B, Seimiya M, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2 autoantibody as a novel indicator for better overall survival in gastric cancer. Cancer Sci 2021;112:847-58. [PMID: 33306856 DOI: 10.1111/cas.14767] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Moguilner S, García AM, Perl YS, Tagliazucchi E, Piguet O, Kumfor F, Reyes P, Matallana D, Sedeño L, Ibáñez A. Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study. Neuroimage 2021;225:117522. [PMID: 33144220 DOI: 10.1016/j.neuroimage.2020.117522] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Kobayashi S, Hiwasa T, Ishige T, Rahmutulla B, Kano M, Hoshino T, Minamoto T, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2, a splicing variant form of PUF60, autoantibody is detected in the sera of esophageal squamous cell carcinoma. Cancer Sci 2019;110:2004-13. [PMID: 30980774 DOI: 10.1111/cas.14024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
16 Ong ML, Reuman L, Youngstrom EA, Abramowitz JS. Discriminative Validity of the Dimensional Obsessive-Compulsive Scale for Separating Obsessive-Compulsive Disorder From Anxiety Disorders. Assessment 2020;27:810-21. [PMID: 30043619 DOI: 10.1177/1073191118791039] [Reference Citation Analysis]
17 Van Meter AR, You DS, Halverson T, Youngstrom EA, Birmaher B, Fristad MA, Kowatch RA, Storfer-Isser A, Horwitz SM, Frazier TW, Arnold LE, Findling RL, Lams Group T. Diagnostic Efficiency of Caregiver Report on the SCARED for Identifying Youth Anxiety Disorders in Outpatient Settings. J Clin Child Adolesc Psychol 2018;47:S161-75. [PMID: 27485325 DOI: 10.1080/15374416.2016.1188698] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
18 Salcedo S, Rizvi SH, Freeman LK, Youngstrom JK, Findling RL, Youngstrom EA. Diagnostic efficiency of the CBCL thought problems and DSM-oriented psychotic symptoms scales for pediatric psychotic symptoms. Eur Child Adolesc Psychiatry 2018;27:1491-8. [PMID: 29556765 DOI: 10.1007/s00787-018-1140-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
19 Algorta GP, Dodd AL, Stringaris A, Youngstrom EA. Diagnostic efficiency of the SDQ for parents to identify ADHD in the UK: a ROC analysis. Eur Child Adolesc Psychiatry 2016;25:949-57. [PMID: 26762184 DOI: 10.1007/s00787-015-0815-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 5.2] [Reference Citation Analysis]
20 Jang HJ, Lee A, Kang J, Song IH, Lee SH. Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach. World J Gastroenterol 2021; 27(44): 7687-7704 [PMID: 34908807 DOI: 10.3748/wjg.v27.i44.7687] [Reference Citation Analysis]
21 Mehta KY, Wu HJ, Menon SS, Fallah Y, Zhong X, Rizk N, Unger K, Mapstone M, Fiandaca MS, Federoff HJ, Cheema AK. Metabolomic biomarkers of pancreatic cancer: a meta-analysis study. Oncotarget. 2017;8:68899-68915. [PMID: 28978166 DOI: 10.18632/oncotarget.20324] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
22 Huang Y, Pepe MS. Biomarker evaluation and comparison using the controls as a reference population. Biostatistics 2009;10:228-44. [PMID: 18755739 DOI: 10.1093/biostatistics/kxn029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
23 Salcedo S, Chen YL, Youngstrom EA, Fristad MA, Gadow KD, Horwitz SM, Frazier TW, Arnold LE, Phillips ML, Birmaher B, Kowatch RA, Findling RL. Diagnostic Efficiency of the Child and Adolescent Symptom Inventory (CASI-4R) Depression Subscale for Identifying Youth Mood Disorders. J Clin Child Adolesc Psychol 2018;47:832-46. [PMID: 28278596 DOI: 10.1080/15374416.2017.1280807] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
24 Tan WS, Ahmad A, Feber A, Mostafid H, Cresswell J, Fankhauser CD, Waisbrod S, Hermanns T, Sasieni P, Kelly JD; DETECT I trial collaborators. Development and validation of a haematuria cancer risk score to identify patients at risk of harbouring cancer. J Intern Med 2019;285:436-45. [PMID: 30521125 DOI: 10.1111/joim.12868] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
25 Chen L, Schiffer JM, Dalton S, Sabourin CL, Niemuth NA, Plikaytis BD, Quinn CP. Comprehensive analysis and selection of anthrax vaccine adsorbed immune correlates of protection in rhesus macaques. Clin Vaccine Immunol 2014;21:1512-20. [PMID: 25185577 DOI: 10.1128/CVI.00469-14] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
26 Cho KO, Lee SH, Jang HJ. Feasibility of fully automated classification of whole slide images based on deep learning. Korean J Physiol Pharmacol. 2020;24:89-99. [PMID: 31908578 DOI: 10.4196/kjpp.2020.24.1.89] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
27 McHugh L, Seldon TA, Brandon RA, Kirk JT, Rapisarda A, Sutherland AJ, Presneill JJ, Venter DJ, Lipman J, Thomas MR, Klein Klouwenberg PM, van Vught L, Scicluna B, Bonten M, Cremer OL, Schultz MJ, van der Poll T, Yager TD, Brandon RB. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts. PLoS Med 2015;12:e1001916. [PMID: 26645559 DOI: 10.1371/journal.pmed.1001916] [Cited by in Crossref: 105] [Cited by in F6Publishing: 89] [Article Influence: 15.0] [Reference Citation Analysis]
28 Ferrari D, Clementi N, Spanò SM, Albitar-Nehme S, Ranno S, Colombini A, Criscuolo E, Di Resta C, Tomaiuolo R, Viganó M, Mancini N, De Vecchi E, Locatelli M, Mangia A, Perno CF, Banfi G. Harmonization of six quantitative SARS-CoV-2 serological assays using sera of vaccinated subjects. Clin Chim Acta 2021;522:144-51. [PMID: 34425105 DOI: 10.1016/j.cca.2021.08.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
29 Bantis LE, Feng Z. Comparison of two correlated ROC curves at a given specificity or sensitivity level. Stat Med 2016;35:4352-67. [PMID: 27324068 DOI: 10.1002/sim.7008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
30 Kleinberg B, van der Toolen Y, Vrij A, Arntz A, Verschuere B. Automated verbal credibility assessment of intentions: The model statement technique and predictive modeling. Appl Cogn Psychol 2018;32:354-66. [PMID: 29861544 DOI: 10.1002/acp.3407] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
31 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. [PMID: 21414208 DOI: 10.1186/1471-2105-12-77] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Zhang B, Wang H. Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods. GIScience & Remote Sensing. [DOI: 10.1080/15481603.2021.2016240] [Reference Citation Analysis]
33 Raiker JS, Freeman AJ, Perez-Algorta G, Frazier TW, Findling RL, Youngstrom EA. Accuracy of Achenbach Scales in the Screening of Attention-Deficit/Hyperactivity Disorder in a Community Mental Health Clinic. J Am Acad Child Adolesc Psychiatry 2017;56:401-9. [PMID: 28433089 DOI: 10.1016/j.jaac.2017.02.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
34 Van Meter AR, Algorta GP, Youngstrom EA, Lechtman Y, Youngstrom JK, Feeny NC, Findling RL. Assessing for suicidal behavior in youth using the Achenbach System of Empirically Based Assessment. Eur Child Adolesc Psychiatry 2018;27:159-69. [PMID: 28748484 DOI: 10.1007/s00787-017-1030-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
35 Jang HJ, Lee A, Kang J, Song IH, Lee SH. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning. World J Gastroenterol 2020; 26(40): 6207-6223 [PMID: 33177794 DOI: 10.3748/wjg.v26.i40.6207] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]