BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G. Control of the thymic medulla and its influence on αβT-cell development. Immunol Rev 2016;271:23-37. [PMID: 27088905 DOI: 10.1111/imr.12406] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Tan D, Yin W, Guan F, Zeng W, Lee P, Candotti F, James LK, Saraiva Camara NO, Haeryfar SM, Chen Y, Benlagha K, Shi LZ, Lei J, Gong Q, Liu Z, Liu C. B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions. Front Cell Dev Biol 2022;10:991840. [DOI: 10.3389/fcell.2022.991840] [Reference Citation Analysis]
2 Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Dong J, Warner LM, Lin LL, Chen MC, O'Connell RM, Lu LF. miR-155 promotes T reg cell development by safeguarding medullary thymic epithelial cell maturation. J Exp Med 2021;218:e20192423. [PMID: 33125052 DOI: 10.1084/jem.20192423] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
4 Jing Y, Cao M, Zhang B, Long X, Wang X. cDC1 Dependent Accumulation of Memory T Cells Is Required for Chronic Autoimmune Inflammation in Murine Testis. Front Immunol 2021;12:651860. [PMID: 34381443 DOI: 10.3389/fimmu.2021.651860] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2021;43:15-27. [PMID: 33306154 DOI: 10.1007/s00281-020-00830-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
6 García-Ceca J, Montero-Herradón S, Zapata AG. Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells 2020;9:E2226. [PMID: 33023072 DOI: 10.3390/cells9102226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
7 Villegas JA, Gradolatto A, Truffault F, Roussin R, Berrih-Aknin S, Le Panse R, Dragin N. Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Front Immunol 2018;9:1663. [PMID: 30083154 DOI: 10.3389/fimmu.2018.01663] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
8 Montero-Herradón S, García-Ceca J, Zapata AG. Altered Maturation of Medullary TEC in EphB-Deficient Thymi Is Recovered by RANK Signaling Stimulation. Front Immunol 2018;9:1020. [PMID: 29867988 DOI: 10.3389/fimmu.2018.01020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
9 Liu Z, Su DM, Yu ZL, Wu F, Liu RF, Luo SQ, Lv ZY, Zeng X, Sun X, Wu ZD. Soluble antigens from the neurotropic pathogen Angiostrongylus cantonensis directly induce thymus atrophy in a mouse model. Oncotarget 2017;8:48575-90. [PMID: 28548945 DOI: 10.18632/oncotarget.17836] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
10 Kugyelka R, Kohl Z, Olasz K, Prenek L, Berki T, Balogh P, Boldizsár F. Correction of T cell deficiency in ZAP-70 knock-out mice by simple intraperitoneal adoptive transfer of thymocytes. Clin Exp Immunol 2018;192:302-14. [PMID: 29431868 DOI: 10.1111/cei.13114] [Reference Citation Analysis]
11 Lucas B, White AJ, Parnell SM, Henley PM, Jenkinson WE, Anderson G. Progressive Changes in CXCR4 Expression That Define Thymocyte Positive Selection Are Dispensable For Both Innate and Conventional αβT-cell Development. Sci Rep 2017;7:5068. [PMID: 28698642 DOI: 10.1038/s41598-017-05182-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
12 Singh A. Biomaterials innovation for next generation ex vivo immune tissue engineering. Biomaterials 2017;130:104-10. [DOI: 10.1016/j.biomaterials.2017.03.015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
13 Apert C, Romagnoli P, van Meerwijk JPM. IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes. Protein Cell 2018;9:322-32. [PMID: 28540653 DOI: 10.1007/s13238-017-0425-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
14 Takahama Y, Ohigashi I, Baik S, Anderson G. Generation of diversity in thymic epithelial cells. Nat Rev Immunol 2017;17:295-305. [PMID: 28317923 DOI: 10.1038/nri.2017.12] [Cited by in Crossref: 112] [Cited by in F6Publishing: 116] [Article Influence: 18.7] [Reference Citation Analysis]
15 Austyn JM. Dendritic Cells in the Immune System-History, Lineages, Tissues, Tolerance, and Immunity. Myeloid Cells in Health and Disease 2017. [DOI: 10.1128/9781555819194.ch10] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Boehm T. Form follows function, function follows form: how lymphoid tissues enable and constrain immune reactions. Immunol Rev 2016;271:4-9. [PMID: 27088903 DOI: 10.1111/imr.12420] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
17 Austyn JM, Gordon S. Dendritic Cells in the Immune System—History, Lineages, Tissues, Tolerance, and Immunity. Microbiol Spectr 2016;4. [DOI: 10.1128/microbiolspec.mchd-0046-2016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]