BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu Z, Connolly J, Biggar KK. Beyond histones - the expanding roles of protein lysine methylation. FEBS J 2017;284:2732-44. [DOI: 10.1111/febs.14056] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Hao B, Sun M, Zhang M, Zhao X, Zhao L, Li B, Zhai L, Liu P, Hu H, Xu J, Tan M. Global characterization of proteome and lysine methylome features in EZH2 wild-type and mutant lymphoma cell lines. Journal of Proteomics 2020;213:103614. [DOI: 10.1016/j.jprot.2019.103614] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Wang YP, Wu EJ, Lurwanu Y, Ding JP, He DC, Waheed A, Nkurikiyimfura O, Liu ST, Li WY, Wang ZH, Yang L, Zhan J. Evidence for a synergistic effect of post-translational modifications and genomic composition of eEF-1α on the adaptation of Phytophthora infestans. Ecol Evol 2021;11:5484-96. [PMID: 34026022 DOI: 10.1002/ece3.7442] [Reference Citation Analysis]
3 Regnier FE, Kim J. Proteins and Proteoforms: New Separation Challenges. Anal Chem 2018;90:361-73. [PMID: 29207237 DOI: 10.1021/acs.analchem.7b05007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
4 Rowe EM, Xing V, Biggar KK. Lysine methylation: Implications in neurodegenerative disease. Brain Research 2019;1707:164-71. [DOI: 10.1016/j.brainres.2018.11.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
5 van Pijkeren A, Bischoff R, Kwiatkowski M. Mass spectrometric analysis of PTM dynamics using stable isotope labeled metabolic precursors in cell culture. Analyst 2019;144:6812-33. [PMID: 31650141 DOI: 10.1039/c9an01258c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Villares M, Berthelet J, Weitzman JB. The clever strategies used by intracellular parasites to hijack host gene expression. Semin Immunopathol 2020;42:215-26. [PMID: 32002610 DOI: 10.1007/s00281-020-00779-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
7 Armaleo D, Müller O, Lutzoni F, Andrésson ÓS, Blanc G, Bode HB, Collart FR, Dal Grande F, Dietrich F, Grigoriev IV, Joneson S, Kuo A, Larsen PE, Logsdon JM Jr, Lopez D, Martin F, May SP, McDonald TR, Merchant SS, Miao V, Morin E, Oono R, Pellegrini M, Rubinstein N, Sanchez-Puerta MV, Savelkoul E, Schmitt I, Slot JC, Soanes D, Szövényi P, Talbot NJ, Veneault-Fourrey C, Xavier BB. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 2019;20:605. [PMID: 31337355 DOI: 10.1186/s12864-019-5629-x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 28] [Article Influence: 13.7] [Reference Citation Analysis]
8 Narasumani M, Harrison PM. Discerning evolutionary trends in post-translational modification and the effect of intrinsic disorder: Analysis of methylation, acetylation and ubiquitination sites in human proteins. PLoS Comput Biol 2018;14:e1006349. [PMID: 30096183 DOI: 10.1371/journal.pcbi.1006349] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
9 Biggar KK, Storey KB. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans. PeerJ 2018;6:e4755. [PMID: 29770276 DOI: 10.7717/peerj.4755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Hori Y, Nishiura M, Tao T, Baba R, Bull SD, Kikuchi K. Fluorogenic probes for detecting deacylase and demethylase activity towards post-translationally-modified lysine residues. Chem Sci 2021;12:2498-503. [PMID: 34164016 DOI: 10.1039/d0sc06551j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Han D, Huang M, Wang T, Li Z, Chen Y, Liu C, Lei Z, Chu X. Lysine methylation of transcription factors in cancer. Cell Death Dis 2019;10:290. [PMID: 30926778 DOI: 10.1038/s41419-019-1524-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 9.7] [Reference Citation Analysis]
12 Mezey N, Cho WCS, Biggar KK. Intriguing Origins of Protein Lysine Methylation: Influencing Cell Function Through Dynamic Methylation. Genomics Proteomics Bioinformatics 2019;17:551-7. [PMID: 32194241 DOI: 10.1016/j.gpb.2019.03.005] [Reference Citation Analysis]
13 Policarpi C, Dabin J, Hackett JA. Epigenetic editing: Dissecting chromatin function in context. Bioessays 2021;43:e2000316. [PMID: 33724509 DOI: 10.1002/bies.202000316] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021;11:1082. [PMID: 34685453 DOI: 10.3390/life11101082] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020;5:169. [PMID: 32904763 DOI: 10.12688/wellcomeopenres.16069.2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Grimes M, Hall B, Foltz L, Levy T, Rikova K, Gaiser J, Cook W, Smirnova E, Wheeler T, Clark NR, Lachmann A, Zhang B, Hornbeck P, Ma'ayan A, Comb M. Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. Sci Signal 2018;11:eaaq1087. [PMID: 29789295 DOI: 10.1126/scisignal.aaq1087] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
17 Zhang Y, Zhou L, Xu Y, Zhou J, Jiang T, Wang J, Li C, Sun X, Song H, Song J. Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer. Angiogenesis 2022. [PMID: 35503397 DOI: 10.1007/s10456-022-09839-4] [Reference Citation Analysis]
18 Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M, Zhou J. Protein Methylation in Diabetic Kidney Disease. Front Med 2022;9:736006. [DOI: 10.3389/fmed.2022.736006] [Reference Citation Analysis]
19 Biggar KK. Protein lysine methylation in the regulation of anoxia tolerance in the red eared slider turtle, Trachemys scripta elegans. Comp Biochem Physiol Part D Genomics Proteomics 2020;34:100660. [PMID: 32066095 DOI: 10.1016/j.cbd.2020.100660] [Reference Citation Analysis]
20 Shu WJ, Du HN. The methyltransferase SETD3-mediated histidine methylation: Biological functions and potential implications in cancers. Biochim Biophys Acta Rev Cancer 2021;1875:188465. [PMID: 33157163 DOI: 10.1016/j.bbcan.2020.188465] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Xie Y, Chen L, Wang R, Wang J, Li J, Xu W, Li Y, Yao SQ, Zhang L, Hao Q, Sun H. Chemical Probes Reveal Sirt2's New Function as a Robust "Eraser" of Lysine Lipoylation. J Am Chem Soc 2019;141:18428-36. [PMID: 31644285 DOI: 10.1021/jacs.9b06913] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
22 Ma S, Cao C, Che S, Wang Y, Su D, Liu S, Gong W, Liu L, Sun J, Zhao J, Wang Q, Song N, Ge T, Guo Q, Tian S, Chen CD, Zhang T, Wang J, Ding X, Yang F, Ying G, Yang J, Zhang K, Zhu Y, Yao Z, Yang N, Shi L. PHF8-promoted TOPBP1 demethylation drives ATR activation and preserves genome stability. Sci Adv 2021;7:eabf7684. [PMID: 33952527 DOI: 10.1126/sciadv.abf7684] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Bichmann M, Prat Oriol N, Ercan-Herbst E, Schöndorf DC, Gomez Ramos B, Schwärzler V, Neu M, Schlüter A, Wang X, Jin L, Hu C, Tian Y, Ried JS, Haberkant P, Gasparini L, Ehrnhoefer DE. SETD7-mediated monomethylation is enriched on soluble Tau in Alzheimer's disease. Mol Neurodegener 2021;16:46. [PMID: 34215303 DOI: 10.1186/s13024-021-00468-x] [Reference Citation Analysis]
24 Wei S, Li C, Yin Z, Wen J, Meng H, Xue L, Wang J. Histone methylation in DNA repair and clinical practice: new findings during the past 5-years. J Cancer 2018;9:2072-81. [PMID: 29937925 DOI: 10.7150/jca.23427] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
25 Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How protein methylation regulates steroid receptor function. Endocr Rev 2021:bnab014. [PMID: 33955470 DOI: 10.1210/endrev/bnab014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2020;21:655-74. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
27 Liang Q, Geng Q, Jiang L, Liang M, Li L, Zhang C, Wang W. Protein methylome analysis in Arabidopsis reveals regulation in RNA-related processes. J Proteomics 2020;213:103601. [PMID: 31809900 DOI: 10.1016/j.jprot.2019.103601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Lin X, Yang M, Liu X, Cheng Z, Ge F. Characterization of Lysine Monomethylome and Methyltransferase in Model Cyanobacterium Synechocystis sp. PCC 6803. Genomics Proteomics Bioinformatics 2020;18:289-304. [PMID: 33130100 DOI: 10.1016/j.gpb.2019.04.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Wu XN, Shi TT, He YH, Wang FF, Sang R, Ding JC, Zhang WJ, Shu XY, Shen HF, Yi J, Gao X, Liu W. Methylation of transcription factor YY2 regulates its transcriptional activity and cell proliferation. Cell Discov 2017;3:17035. [PMID: 29098080 DOI: 10.1038/celldisc.2017.35] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
30 Tao H, Song Z, Ding X, Yang J, Shi K, Li J. Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification. Heart Fail Rev 2018;23:789-99. [DOI: 10.1007/s10741-018-9694-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
31 Jiao S, Xu R, Du S. Smyd1 is essential for myosin expression and sarcomere organization in craniofacial, extraocular, and cardiac muscles. J Genet Genomics 2021;48:208-18. [PMID: 33958316 DOI: 10.1016/j.jgg.2021.03.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018;293:10438-46. [PMID: 29743234 DOI: 10.1074/jbc.AW118.003235] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
33 Li R, Wei X, Jiang D. Protein methylation functions as the posttranslational modification switch to regulate autophagy. Cell Mol Life Sci 2019;76:3711-22. [DOI: 10.1007/s00018-019-03161-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Kublanovsky M, Aharoni A, Levy D. Enhanced PKMT-substrate recognition through non active-site interactions. Biochem Biophys Res Commun 2018;501:1029-33. [PMID: 29778536 DOI: 10.1016/j.bbrc.2018.05.103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Su DS, Qu J, Schulz M, Blackledge CW, Yu H, Zeng J, Burgess J, Reif A, Stern M, Nagarajan R, Pappalardi MB, Wong K, Graves AP, Bonnette W, Wang L, Elkins P, Knapp-Reed B, Carson JD, McHugh C, Mohammad H, Kruger R, Luengo J, Heerding DA, Creasy CL. Discovery of Isoxazole Amides as Potent and Selective SMYD3 Inhibitors. ACS Med Chem Lett 2020;11:133-40. [PMID: 32071679 DOI: 10.1021/acsmedchemlett.9b00493] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 [DOI: 10.1101/274688] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Kwiatkowski S, Drozak J. Protein Histidine Methylation. Curr Protein Pept Sci 2020;21:675-89. [PMID: 32188384 DOI: 10.2174/1389203721666200318161330] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
38 Dai S, Horton JR, Woodcock CB, Wilkinson AW, Zhang X, Gozani O, Cheng X. Structural basis for the target specificity of actin histidine methyltransferase SETD3. Nat Commun 2019;10:3541. [PMID: 31388018 DOI: 10.1038/s41467-019-11554-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
39 Biggar KK, Charih F, Liu H, Ruiz-Blanco YB, Stalker L, Chopra A, Connolly J, Adhikary H, Frensemier K, Hoekstra M, Galka M, Fang Q, Wynder C, Stanford WL, Green JR, Li SS. Proteome-wide Prediction of Lysine Methylation Leads to Identification of H2BK43 Methylation and Outlines the Potential Methyllysine Proteome. Cell Rep 2020;32:107896. [PMID: 32668242 DOI: 10.1016/j.celrep.2020.107896] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
40 Scheer S, Ackloo S, Medina TS, Schapira M, Li F, Ward JA, Lewis AM, Northrop JP, Richardson PL, Kaniskan HÜ, Shen Y, Liu J, Smil D, McLeod D, Zepeda-Velazquez CA, Luo M, Jin J, Barsyte-Lovejoy D, Huber KVM, De Carvalho DD, Vedadi M, Zaph C, Brown PJ, Arrowsmith CH. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat Commun 2019;10:19. [PMID: 30604761 DOI: 10.1038/s41467-018-07905-4] [Cited by in Crossref: 63] [Cited by in F6Publishing: 45] [Article Influence: 21.0] [Reference Citation Analysis]
41 Padalino G, Chalmers IW, Brancale A, Hoffmann KF. Identification of 6-(piperazin-1-yl)-1,3,5-triazine as a chemical scaffold with broad anti-schistosomal activities. Wellcome Open Res 2020;5:169. [PMID: 32904763 DOI: 10.12688/wellcomeopenres.16069.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
42 Maran SR, Fleck K, Monteiro-Teles NM, Isebe T, Walrad P, Jeffers V, Cestari I, Vasconcelos EJR, Moretti N. Protein acetylation in the critical biological processes in protozoan parasites. Trends Parasitol 2021;37:815-30. [PMID: 33994102 DOI: 10.1016/j.pt.2021.04.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Xiao L, Liang H, Jiang G, Ding X, Liu X, Sun J, Jiang Y, Song L, Duan X. Proteome-wide identification of non-histone lysine methylation in tomato during fruit ripening. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.02.013] [Reference Citation Analysis]
44 Nwajiobi O, Mahesh S, Streety X, Raj M. Selective Triazenation Reaction (STaR) of Secondary Amines for Tagging Monomethyl Lysine Post-Translational Modifications. Angew Chem Int Ed Engl 2021;60:7344-52. [PMID: 33354813 DOI: 10.1002/anie.202013997] [Reference Citation Analysis]
45 Wang K, Huang W, Chen R, Lin P, Zhang T, Ni YF, Li H, Wu J, Sun XX, Geng JJ, Zhu YM, Nan G, Zhang W, Chen X, Zhu P, Bian H, Chen ZN. Di-methylation of CD147-K234 Promotes the Progression of NSCLC by Enhancing Lactate Export. Cell Metab 2021;33:160-173.e6. [PMID: 33406400 DOI: 10.1016/j.cmet.2020.12.010] [Reference Citation Analysis]