BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vanhoof-Villalba SL, Gautier NM, Mishra V, Glasscock E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 2018;59:358-68. [PMID: 29265344 DOI: 10.1111/epi.13978] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
Number Citing Articles
1 Wu C, Fu P, Cho H, Chuang T, Wu S. Evidence for Dual Activation of IK(M) and IK(Ca) Caused by QO-58 (5-(2,6-Dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one). IJMS 2022;23:7042. [DOI: 10.3390/ijms23137042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Cho HY, Chuang TH, Wu SN. The Effectiveness in Activating M-Type K+ Current Produced by Solifenacin ([(3R)-1-azabicyclo[2.2.2]octan-3-yl] (1S)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxylate): Independent of Its Antimuscarinic Action. Int J Mol Sci 2021;22:12399. [PMID: 34830281 DOI: 10.3390/ijms222212399] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
3 Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021;25:223-35. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Lo YC, Lin CL, Fang WY, Lőrinczi B, Szatmári I, Chang WH, Fülöp F, Wu SN. Effective Activation by Kynurenic Acid and Its Aminoalkylated Derivatives on M-Type K+ Current. Int J Mol Sci 2021;22:1300. [PMID: 33525680 DOI: 10.3390/ijms22031300] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 Pei Z, Shi M, Guo J, Shen B. Heart Rate Variability Based Prediction of Personalized Drug Therapeutic Response: The Present Status and the Perspectives. CTMC 2020;20:1640-50. [DOI: 10.2174/1568026620666200603105002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Glasscock E. Kv1.1 channel subunits in the control of neurocardiac function. Channels (Austin) 2019;13:299-307. [PMID: 31250689 DOI: 10.1080/19336950.2019.1635864] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
7 Trosclair K, Dhaibar HA, Gautier NM, Mishra V, Glasscock E. Neuron-specific Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory dysregulation. Neurobiol Dis 2020;137:104759. [PMID: 31978607 DOI: 10.1016/j.nbd.2020.104759] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
8 Li BG, Wu WJ, Zheng HC, Yang HF, Zuo YX, Cui XP. Long noncoding RNA GAS5 silencing inhibits the expression of KCNQ3 by sponging miR-135a-5p to prevent the progression of epilepsy. Kaohsiung J Med Sci 2019;35:527-34. [PMID: 31373759 DOI: 10.1002/kjm2.12102] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
9 Derera ID, Smith KC, Smith BN. Altered A-type potassium channel function in the nucleus tractus solitarii in acquired temporal lobe epilepsy. J Neurophysiol 2019;121:177-87. [PMID: 30517061 DOI: 10.1152/jn.00556.2018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]