BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 2021;178:489-514. [PMID: 33125712 DOI: 10.1111/bph.15299] [Cited by in Crossref: 78] [Cited by in F6Publishing: 86] [Article Influence: 26.0] [Reference Citation Analysis]
Number Citing Articles
1 Sluyter R, Sophocleous RA, Stokes L. P2X receptors: Insights from the study of the domestic dog. Neuropharmacology 2023;224:109358. [PMID: 36464207 DOI: 10.1016/j.neuropharm.2022.109358] [Reference Citation Analysis]
2 Liu J, Liu S, Hu S, Lu J, Wu C, Hu D, Zhang W. ATP ion channel P2X purinergic receptors in inflammation response. Biomedicine & Pharmacotherapy 2023;158:114205. [DOI: 10.1016/j.biopha.2022.114205] [Reference Citation Analysis]
3 Kong X, Liang H, An W, Bai S, Miao Y, Qiang J, Wang H, Zhou Y, Zhang Q. Rapid identification of early renal damage in asymptomatic hyperuricemia patients based on urine Raman spectroscopy and bioinformatics analysis. Front Chem 2023;11. [DOI: 10.3389/fchem.2023.1045697] [Reference Citation Analysis]
4 Pacheco PAF, Gonzaga DTG, von Ranke NL, Rodrigues CR, da Rocha DR, da Silva FC, Ferreira VF, Faria RX. Synthesis, Biological Evaluation and Molecular Modeling Studies of Naphthoquinone Sulfonamides and Sulfonate Ester Derivatives as P2X7 Inhibitors. Molecules 2023;28. [PMID: 36677652 DOI: 10.3390/molecules28020590] [Reference Citation Analysis]
5 Kozlovskiy SA, Pislyagin EA, Menchinskaya ES, Chingizova EA, Sabutski YE, Polonik SG, Likhatskaya GN, Aminin DL. Anti-Inflammatory Activity of 1,4-Naphthoquinones Blocking P2X7 Purinergic Receptors in RAW 264.7 Macrophage Cells. Toxins (Basel) 2023;15. [PMID: 36668867 DOI: 10.3390/toxins15010047] [Reference Citation Analysis]
6 Giniatullin R, Nistri A. Role of ATP in migraine mechanisms: focus on P2X3 receptors. J Headache Pain 2023;24:1. [PMID: 36597043 DOI: 10.1186/s10194-022-01535-4] [Reference Citation Analysis]
7 Fountain SJ. Purinergic neurotransmission and nucleotide receptors. Primer on the Autonomic Nervous System 2023. [DOI: 10.1016/b978-0-323-85492-4.00006-5] [Reference Citation Analysis]
8 Mozel S, Arciszewski MB. Immunodetection of P2X2 Receptor in Enteric Nervous System Neurons of the Small Intestine of Pigs. Animals (Basel) 2022;12. [PMID: 36552495 DOI: 10.3390/ani12243576] [Reference Citation Analysis]
9 Mesto N, Movassat J, Tourrel-cuzin C. P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity as a promising novel therapeutic approach for the treatment of type 2 diabetes? Front Endocrinol 2022;13. [DOI: 10.3389/fendo.2022.1099152] [Reference Citation Analysis]
10 Bennetts FM, Mobbs JI, Ventura S, Thal DM. The P2X1 receptor as a therapeutic target. Purinergic Signal 2022;18:421-33. [PMID: 35821454 DOI: 10.1007/s11302-022-09880-4] [Reference Citation Analysis]
11 Weinhausen S, Nagel J, Namasivayam V, Spanier C, Abdelrahman A, Hanck T, Hausmann R, Müller CE. Extracellular binding sites of positive and negative allosteric P2X4 receptor modulators. Life Sciences 2022;311:121143. [DOI: 10.1016/j.lfs.2022.121143] [Reference Citation Analysis]
12 Dales MO, Mitchell C, Gurney AM, Drummond RM, Kennedy C. Characterisation of P2Y receptor subtypes mediating vasodilation and vasoconstriction of rat pulmonary artery using selective antagonists. Purinergic Signal 2022;18:515-28. [PMID: 36018534 DOI: 10.1007/s11302-022-09895-x] [Reference Citation Analysis]
13 Bartlett R, Ly D, Cashman NR, Sluyter R, Yerbury JJ. P2X7 receptor activation mediates superoxide dismutase 1 (SOD1) release from murine NSC-34 motor neurons. Purinergic Signal 2022;18:451-67. [PMID: 35478453 DOI: 10.1007/s11302-022-09863-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Staal RGW, Gandhi A, Zhou H, Cajina M, Jacobsen AM, Hestehave S, Hopper A, Poda S, Chandresana G, Zorn SH, Campbell B, Segerdahl M, Mӧller T, Munro G. Inhibition of P2X7 receptors by Lu AF27139 diminishes colonic hypersensitivity and CNS prostanoid levels in a rat model of visceral pain. Purinergic Signal 2022;18:499-514. [PMID: 36001278 DOI: 10.1007/s11302-022-09892-0] [Reference Citation Analysis]
15 Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2022;:1-18. [PMID: 36445556 DOI: 10.1007/s12264-022-00986-8] [Reference Citation Analysis]
16 Wu P, Wang Y, Liu Y, Liu Y, Zhou G, Wu X, Wen Q. Emerging roles of the P2X7 receptor in cancer pain. Purinergic Signalling 2022. [DOI: 10.1007/s11302-022-09902-1] [Reference Citation Analysis]
17 Barnes DA, Hoener MC, Moore CS, Berry MD. TAAR1 Regulates Purinergic-induced TNF Secretion from Peripheral, But Not CNS-resident, Macrophages. J Neuroimmune Pharmacol 2022. [DOI: 10.1007/s11481-022-10053-8] [Reference Citation Analysis]
18 Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, Farias FP, Bisaggio RDC, Albuquerque C, Savino W, Coutinho-Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022;112:983-1012. [PMID: 35837975 DOI: 10.1002/JLB.2RU0421-226RR] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 King BF. Rehabilitation of the P2X5 receptor: a re-evaluation of structure and function. Purinergic Signalling 2022. [DOI: 10.1007/s11302-022-09903-0] [Reference Citation Analysis]
20 Liang H, Yin H, Li S, Chen Y, Zhao Y, Hu W, Zhou R. Calcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities. Biomolecules 2022;12:1383. [DOI: 10.3390/biom12101383] [Reference Citation Analysis]
21 Garozzo R, Zuccarini M, Giuliani P, Di Liberto V, Mudò G, Caciagli F, Ciccarelli R, Ciruela F, Di Iorio P, Condorelli DF. Guanine inhibits the growth of human glioma and melanoma cell lines by interacting with GPR23. Front Pharmacol 2022;13:970891. [DOI: 10.3389/fphar.2022.970891] [Reference Citation Analysis]
22 Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022;220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Reference Citation Analysis]
23 Isaak A, Dobelmann C, Füsser FT, Erlitz KS, Koch O, Junker A. Unveiling the Structure-Activity Relationships at the Orthosteric Binding Site of P2X Ion Channels: The Route to Selectivity. J Med Chem 2022. [PMID: 35930402 DOI: 10.1021/acs.jmedchem.2c00812] [Reference Citation Analysis]
24 Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. IJMS 2022;23:8683. [DOI: 10.3390/ijms23158683] [Reference Citation Analysis]
25 Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Reports 2022. [DOI: 10.1016/j.bonr.2022.101608] [Reference Citation Analysis]
26 Zhang Y, Yin H, Rubini P, Illes P, Tang Y. ATP indirectly stimulates hippocampal CA1 and CA3 pyramidal neurons via the activation of neighboring P2X7 receptor-bearing astrocytes and NG2 glial cells, respectively. Front Pharmacol 2022;13:944541. [DOI: 10.3389/fphar.2022.944541] [Reference Citation Analysis]
27 Rumney RMH, Róg J, Chira N, Kao AP, Al-khalidi R, Górecki DC. P2X7 Purinoceptor Affects Ectopic Calcification of Dystrophic Muscles. Front Pharmacol 2022;13:935804. [DOI: 10.3389/fphar.2022.935804] [Reference Citation Analysis]
28 Kang KM, Lee I, Nam H, Kim Y. AI-based prediction of new binding site and virtual screening for the discovery of novel P2X3 receptor antagonists. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114556] [Reference Citation Analysis]
29 Oken AC, Krishnamurthy I, Savage JC, Lisi NE, Godsey MH, Mansoor SE. Molecular Pharmacology of P2X Receptors: Exploring Druggable Domains Revealed by Structural Biology. Front Pharmacol 2022;13:925880. [DOI: 10.3389/fphar.2022.925880] [Reference Citation Analysis]
30 Rawish E, Langer HF. Platelets and the Role of P2X Receptors in Nociception, Pain, Neuronal Toxicity and Thromboinflammation. Int J Mol Sci 2022;23:6585. [PMID: 35743029 DOI: 10.3390/ijms23126585] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Griffett K. Targeting Nuclear Receptors for Chronic Inflammatory Pain: A Potential Alternative. ACS Pharmacol Transl Sci 2022;5:440-4. [PMID: 35711817 DOI: 10.1021/acsptsci.2c00063] [Reference Citation Analysis]
32 Qiao C, Tang Y, Li Q, Zhu X, Peng X, Zhao R. ATP-gated P2X7 receptor as a potential target for prostate cancer. Hum Cell 2022. [PMID: 35657562 DOI: 10.1007/s13577-022-00729-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Scarpellino G, Genova T, Quarta E, Distasi C, Dionisi M, Fiorio Pla A, Munaron L. P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium. Cancers (Basel) 2022;14:2743. [PMID: 35681724 DOI: 10.3390/cancers14112743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Omolaoye TS, Jalaleddine N, Cardona Maya WD, du Plessis SS. Mechanisms of SARS-CoV-2 and Male Infertility: Could Connexin and Pannexin Play a Role? Front Physiol 2022;13:866675. [DOI: 10.3389/fphys.2022.866675] [Reference Citation Analysis]
35 Wang P, Shi B, Wang C, Wang Y, Que W, Jiang Z, Liu X, Jiang Q, Li H, Peng Z, Zhong L. Hepatic pannexin-1 mediates ST2+ regulatory T cells promoting resolution of inflammation in lipopolysaccharide-induced endotoxemia. Clin Transl Med 2022;12:e849. [PMID: 35593197 DOI: 10.1002/ctm2.849] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Bhat JA, Kumar M. Neuroprotective Effects of Theobromine in permanent bilateral common carotid artery occlusion rat model of cerebral hypoperfusion. Metab Brain Dis 2022. [PMID: 35587851 DOI: 10.1007/s11011-022-00995-6] [Reference Citation Analysis]
37 Weng ZJ, Hu SX, Zhang F, Zhang ZY, Zhou Y, Zhao M, Huang Y, Xin YH, Wu HG, Liu HR. Spinal cord astrocyte P2X7Rs mediate the inhibitory effect of electroacupuncture on visceral hypersensitivity of rat with irritable bowel syndrome. Purinergic Signal 2022. [PMID: 35389158 DOI: 10.1007/s11302-021-09830-6] [Reference Citation Analysis]
38 Rossato M, Favaretto F, Granzotto M, Crescenzi M, Boscaro A, Di Vincenzo A, Capone F, Dalla Nora E, Zabeo E, Vettor R. Molecular and Pharmacological Evidence for the Expression of Multiple Functional P2 Purinergic Receptors in Human Adipocytes. Molecules 2022;27:1913. [PMID: 35335277 DOI: 10.3390/molecules27061913] [Reference Citation Analysis]
39 Castillo C, Saez-Orellana F, Godoy PA, Fuentealba J. Microglial Activation Modulated by P2X4R in Ischemia and Repercussions in Alzheimer's Disease. Front Physiol 2022;13:814999. [PMID: 35283778 DOI: 10.3389/fphys.2022.814999] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Huang L, Tang Y, Sperlagh B, Signorini C. Glial Purinergic Signaling-Mediated Oxidative Stress (GPOS) in Neuropsychiatric Disorders. Oxidative Medicine and Cellular Longevity 2022;2022:1-12. [DOI: 10.1155/2022/1075440] [Reference Citation Analysis]
41 Cui W, Wang S, Zhang Y, Wang Y, Fan Y, Guo C, Li X, Lei Y, Wang W, Yang X, Hattori M, Li C, Wang J, Yu Y. P2X3-selective mechanism of Gefapixant, a drug candidate for the treatment of refractory chronic cough. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.03.030] [Reference Citation Analysis]
42 Sattler C, Benndorf K. Enlightening activation gating in P2X receptors. Purinergic Signalling. [DOI: 10.1007/s11302-022-09850-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F. Signalling by extracellular nucleotides in health and disease. Biochim Biophys Acta Mol Cell Res 2022;1869:119237. [PMID: 35150807 DOI: 10.1016/j.bbamcr.2022.119237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
44 Hutson P, Guieu R, Deharo JC, Michelet P, Brignole M, Vander Ark C, Hamdan MH. Safety, Pharmacokinetic, and Pharmacodynamic Study of a Sublingual Formula for the Treatment of Vasovagal Syncope. Drugs R D 2022. [PMID: 35150431 DOI: 10.1007/s40268-021-00378-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2022. [PMID: 35106736 DOI: 10.1007/s11302-021-09836-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Bianca Maria Platania C, Drago F, Bucolo C. The P2X7 receptor as a new pharmacological target for retinal diseases. Biochemical Pharmacology 2022. [DOI: 10.1016/j.bcp.2022.114942] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 Sheng D, Hattori M. Recent progress in the structural biology of P2X receptors. Proteins 2022. [PMID: 35023590 DOI: 10.1002/prot.26302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
48 Müller CE, Namasivayam V. Agonists, Antagonists, and Modulators of P2X7 Receptors. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2384-8_2] [Reference Citation Analysis]
49 Hurtado-navarro L, Baroja-mazo A, Pelegrín P. Characterization of P2X7 Receptors in Human Blood Cells. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2384-8_15] [Reference Citation Analysis]
50 Schmalzing G, Markwardt F. Established Protocols for cRNA Expression and Voltage-Clamp Characterization of the P2X7 Receptor in Xenopus laevis Oocytes. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2384-8_9] [Reference Citation Analysis]
51 Michel MC, Birder L. Medications and Drug Targets for the Treatment of Diseases of the Urinary Bladder and Urethra. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00077-3] [Reference Citation Analysis]
52 Ren W, Rubini P, Tang Y, Engel T, Illes P. Inherent P2X7 Receptors Regulate Macrophage Functions during Inflammatory Diseases. Int J Mol Sci 2021;23:232. [PMID: 35008658 DOI: 10.3390/ijms23010232] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
53 Zuccarini M, Lambertucci C, Carluccio M, Giuliani P, Ronci M, Spinaci A, Volpini R, Ciccarelli R, Di Iorio P. Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A1 Receptor Ligands. Cells 2021;10:3560. [PMID: 34944069 DOI: 10.3390/cells10123560] [Reference Citation Analysis]
54 Straus DB, Pryor D, Haque TT, Kee SA, Dailey JM, Jackson KG, Barnstein BO, Ryan JJ. IL-33 priming amplifies ATP-mediated mast cell cytokine production. Cell Immunol 2021;371:104470. [PMID: 34942481 DOI: 10.1016/j.cellimm.2021.104470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Ren WJ, Illes P. Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal 2021. [PMID: 34799827 DOI: 10.1007/s11302-021-09796-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
56 Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021. [PMID: 34757513 DOI: 10.1007/s11302-021-09814-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
57 Davenport AJ, Neagoe I, Bräuer N, Koch M, Rotgeri A, Nagel J, Laux-Biehlmann A, Machet F, Coelho AM, Boyce S, Carty N, Gemkow MJ, Hess SD, Zollner TM, Fischer OM. Eliapixant is a selective P2X3 receptor antagonist for the treatment of disorders associated with hypersensitive nerve fibers. Sci Rep 2021;11:19877. [PMID: 34615939 DOI: 10.1038/s41598-021-99177-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
58 Apolloni S, Fabbrizio P, Amadio S, Napoli G, Freschi M, Sironi F, Pevarello P, Tarroni P, Liberati C, Bendotti C, Volonté C. Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. Int J Mol Sci 2021;22:10649. [PMID: 34638992 DOI: 10.3390/ijms221910649] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
59 Mahmood A, Munir R, Zia-Ur-Rehman M, Javid N, Shah SJA, Noreen L, Sindhu TA, Iqbal J. Synthesis of Sulfonamide Tethered (Hetero)aryl ethylidenes as Potential Inhibitors of P2X Receptors: A Promising Way for the Treatment of Pain and Inflammation. ACS Omega 2021;6:25062-75. [PMID: 34604685 DOI: 10.1021/acsomega.1c04302] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
60 Toyohara J, Sakata M, Wagatsuma K, Tago T, Ishibashi K, Ishii K, Elsinga P, Ishiwata K. Test-retest reproducibility of cerebral adenosine A2A receptor quantification using [11C]preladenant. Ann Nucl Med 2021. [PMID: 34564828 DOI: 10.1007/s12149-021-01678-5] [Reference Citation Analysis]
61 Conte G, Menéndez-Méndez A, Bauer S, El-Naggar H, Alves M, Nicke A, Delanty N, Rosenow F, Henshall DC, Engel T. Circulating P2X7 Receptor Signaling Components as Diagnostic Biomarkers for Temporal Lobe Epilepsy. Cells 2021;10:2444. [PMID: 34572093 DOI: 10.3390/cells10092444] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
62 Fong Z, Griffin CS, Large RJ, Hollywood MA, Thornbury KD, Sergeant GP. Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021;118:e2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Reference Citation Analysis]
63 Müller CE, Namasivayam V. Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal 2021;17:633-48. [PMID: 34476721 DOI: 10.1007/s11302-021-09813-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
64 Pérez-Sen R, Delicado EG. Dissecting the Purinergic Signaling Puzzle. Int J Mol Sci 2021;22:8925. [PMID: 34445630 DOI: 10.3390/ijms22168925] [Reference Citation Analysis]
65 Ford AP, Dillon MP, Kitt MM, Gever JR. The discovery and development of gefapixant. Auton Neurosci 2021;235:102859. [PMID: 34403981 DOI: 10.1016/j.autneu.2021.102859] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
66 Beaino W, Janssen B, Vugts DJ, de Vries HE, Windhorst AD. Towards PET imaging of the dynamic phenotypes of microglia. Clin Exp Immunol 2021. [PMID: 34331705 DOI: 10.1111/cei.13649] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
67 Kennedy C. ATP as a cotransmitter in sympathetic and parasympathetic nerves - another Burnstock legacy. Auton Neurosci 2021;235:102860. [PMID: 34340045 DOI: 10.1016/j.autneu.2021.102860] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Rabelo ILA, Arnaud-Sampaio VF, Adinolfi E, Ulrich H, Lameu C. Cancer Metabostemness and Metabolic Reprogramming via P2X7 Receptor. Cells 2021;10:1782. [PMID: 34359950 DOI: 10.3390/cells10071782] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
69 Wang T, Ulrich H, Semyanov A, Illes P, Tang Y. Optical control of purinergic signaling. Purinergic Signal 2021;17:385-92. [PMID: 34156578 DOI: 10.1007/s11302-021-09799-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Ye SS, Tang Y, Song JT. ATP and Adenosine in the Retina and Retinal Diseases. Front Pharmacol 2021;12:654445. [PMID: 34211393 DOI: 10.3389/fphar.2021.654445] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
71 King BF. P2X3 receptors participate in purinergic inhibition of gastrointestinal smooth muscle. Auton Neurosci 2021;234:102830. [PMID: 34116466 DOI: 10.1016/j.autneu.2021.102830] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Li J, Zhang Y, Illes P, Tang Y, Rubini P. Increasing Efficiency of Repetitive Electroacupuncture on Purine- and Acid-Induced Pain During a Three-Week Treatment Schedule. Front Pharmacol 2021;12:680198. [PMID: 34040538 DOI: 10.3389/fphar.2021.680198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Kong Q, Quan Y, Tian G, Zhou J, Liu X. Purinergic P2 Receptors: Novel Mediators of Mechanotransduction. Front Pharmacol 2021;12:671809. [PMID: 34025431 DOI: 10.3389/fphar.2021.671809] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
74 Bardsley EN, Pen DK, McBryde FD, Ford AP, Paton JFR. The inevitability of ATP as a transmitter in the carotid body. Auton Neurosci 2021;234:102815. [PMID: 33993068 DOI: 10.1016/j.autneu.2021.102815] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
75 Klaver D, Thurnher M. Control of Macrophage Inflammation by P2Y Purinergic Receptors. Cells 2021;10:1098. [PMID: 34064383 DOI: 10.3390/cells10051098] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
76 Kostritskii AY, Alleva C, Cönen S, Machtens JP. g_elpot: A Tool for Quantifying Biomolecular Electrostatics from Molecular Dynamics Trajectories. J Chem Theory Comput 2021;17:3157-67. [PMID: 33914551 DOI: 10.1021/acs.jctc.0c01246] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
77 Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021;9:667815. [PMID: 33937270 DOI: 10.3389/fcell.2021.667815] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Spinaci A, Buccioni M, Dal Ben D, Marucci G, Volpini R, Lambertucci C. P2X3 Receptor Ligands: Structural Features and Potential Therapeutic Applications. Front Pharmacol 2021;12:653561. [PMID: 33927627 DOI: 10.3389/fphar.2021.653561] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
79 Sarti AC, Vultaggio-Poma V, Di Virgilio F. P2X7: a receptor with a split personality that raises new hopes for anti-cancer therapy. Purinergic Signal 2021;17:175-8. [PMID: 33818742 DOI: 10.1007/s11302-021-09783-w] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Györi J, Kohn AB, Romanova DY, Moroz LL. ATP signaling in the integrative neural center of Aplysia californica. Sci Rep 2021;11:5478. [PMID: 33750901 DOI: 10.1038/s41598-021-84981-5] [Reference Citation Analysis]
81 Sharma S, Kalra H, Akundi RS. Extracellular ATP Mediates Cancer Cell Migration and Invasion Through Increased Expression of Cyclooxygenase 2. Front Pharmacol 2020;11:617211. [PMID: 33584298 DOI: 10.3389/fphar.2020.617211] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
82 Kennedy C. The P2Y/P2X divide: How it began. Biochem Pharmacol 2021;187:114408. [PMID: 33444568 DOI: 10.1016/j.bcp.2021.114408] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
83 Gil-Redondo JC, Iturri J, Ortega F, Pérez-Sen R, Weber A, Miras-Portugal MT, Toca-Herrera JL, Delicado EG. Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy. Int J Mol Sci 2021;22:E624. [PMID: 33435130 DOI: 10.3390/ijms22020624] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
84 Jacobson KA, IJzerman AP, Müller CE. Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochem Pharmacol 2021;187:114311. [PMID: 33130128 DOI: 10.1016/j.bcp.2020.114311] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]