BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patil NA, Rosengren KJ, Separovic F, Wade JD, Bathgate RAD, Hossain MA. Relaxin family peptides: structure-activity relationship studies. Br J Pharmacol 2017;174:950-61. [PMID: 27922185 DOI: 10.1111/bph.13684] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Tapia Cáceres F, Gaspari TA, Hossain MA, Samuel CS. Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. IJMS 2022;23:7074. [DOI: 10.3390/ijms23137074] [Reference Citation Analysis]
2 Speck D, Kleinau G, Meininghaus M, Erbe A, Einfeldt A, Szczepek M, Scheerer P, Pütter V. Expression and Characterization of Relaxin Family Peptide Receptor 1 Variants. Front Pharmacol 2022;12:826112. [DOI: 10.3389/fphar.2021.826112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Francis J, Dickton DD. Considerations for lactation with Ehlers-Danlos syndrome: a narrative review. Int Breastfeed J 2022;17:4. [PMID: 34983567 DOI: 10.1186/s13006-021-00442-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021;131:429-50. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Reference Citation Analysis]
5 Bian R, Gong J, Li J, Li P. Relaxin increased blood pressure and sympathetic activity in paraventricular nucleus of hypertensive rats via enhancing oxidative stress. Peptides 2021;141:170550. [PMID: 33839220 DOI: 10.1016/j.peptides.2021.170550] [Reference Citation Analysis]
6 Karas JA, Wade JD, Hossain MA. The Chemical Synthesis of Insulin: An Enduring Challenge. Chem Rev 2021;121:4531-60. [PMID: 33689304 DOI: 10.1021/acs.chemrev.0c01251] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Lin L, Lin G, Zhou Q, Bathgate RAD, Gong GQ, Yang D, Liu Q, Wang MW. Design, synthesis and pharmacological evaluation of tricyclic derivatives as selective RXFP4 agonists. Bioorg Chem 2021;110:104782. [PMID: 33730669 DOI: 10.1016/j.bioorg.2021.104782] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Mita M, Matsubara S, Osugi T, Shiraishi A, Wada A, Satake H. A novel G protein-coupled receptor for starfish gonadotropic hormone, relaxin-like gonad-stimulating peptide. PLoS One 2020;15:e0242877. [PMID: 33226996 DOI: 10.1371/journal.pone.0242877] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
9 Praveen P, Tailhades J, Rosengren KJ, Liu M, Wade JD, Bathgate RAD, Hossain MA. Effects of C-Terminal B-Chain Modifications in a Relaxin 3 Agonist Analogue. ACS Med Chem Lett 2020;11:2336-40. [PMID: 33214850 DOI: 10.1021/acsmedchemlett.0c00456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Nistri S, Fiorillo C, Becatti M, Bani D. Human Relaxin-2 (Serelaxin) Attenuates Oxidative Stress in Cardiac Muscle Cells Exposed In Vitro to Hypoxia-Reoxygenation. Evidence for the Involvement of Reduced Glutathione Up-Regulation. Antioxidants (Basel) 2020;9:E774. [PMID: 32825567 DOI: 10.3390/antiox9090774] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
11 Li HZ, Li N, Shao XX, Liu YL, Xu ZG, Guo ZY. Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay. Biochimie 2020;177:117-26. [PMID: 32810565 DOI: 10.1016/j.biochi.2020.08.008] [Reference Citation Analysis]
12 D'ercole A, Sabatino G, Pacini L, Impresari E, Capecchi I, Papini AM, Rovero P. On‐resin microwave‐assisted copper‐catalyzed azide‐alkyne cycloaddition of H1‐relaxin B single chain ‘stapled’ analogues. Peptide Science 2020;112. [DOI: 10.1002/pep2.24159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
13 Tombling BJ, Wang CK, Craik DJ. EGF‐artige und andere disulfidreiche Mikrodomänen als therapeutische Molekülgerüste. Angew Chem 2020;132:11314-28. [DOI: 10.1002/ange.201913809] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Tombling BJ, Wang CK, Craik DJ. EGF-like and Other Disulfide-rich Microdomains as Therapeutic Scaffolds. Angew Chem Int Ed Engl 2020;59:11218-32. [PMID: 31867866 DOI: 10.1002/anie.201913809] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
15 Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020;8:87. [PMID: 32133341 DOI: 10.3389/fchem.2020.00087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
16 Welch NG, Mukherjee S, Hossain MA, Praveen P, Werkmeister JA, Wade JD, Bathgate RAD, Winkler DA, Thissen H. Coatings Releasing the Relaxin Peptide Analogue B7-33 Reduce Fibrotic Encapsulation. ACS Appl Mater Interfaces 2019;11:45511-9. [PMID: 31713411 DOI: 10.1021/acsami.9b17859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
17 Praveen P, Bathgate RAD, Hossain MA. Engineering of chimeric peptides as antagonists for the G protein-coupled receptor, RXFP4. Sci Rep 2019;9:17828. [PMID: 31780677 DOI: 10.1038/s41598-019-53707-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Fry CH, Chakrabarty B, Hashitani H, Andersson KE, McCloskey K, Jabr RI, Drake MJ. New targets for overactive bladder-ICI-RS 2109. Neurourol Urodyn 2020;39 Suppl 3:S113-21. [PMID: 31737931 DOI: 10.1002/nau.24228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
19 Tikhonova IG, Gigoux V, Fourmy D. Understanding Peptide Binding in Class A G Protein-Coupled Receptors. Mol Pharmacol 2019;96:550-61. [PMID: 31436539 DOI: 10.1124/mol.119.115915] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
20 Aragón-herrera A, Feijóo-bandín S, Abella V, Álvarez L, Roselló-lletí E, Portolés M, Tarazón E, Bigazzi M, Bani D, Gualillo O, González-juanatey JR, Lago F. Serelaxin (recombinant human relaxin-2) treatment affects the endogenous synthesis of long chain poly-unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue. Pharmacological Research 2019;144:51-65. [DOI: 10.1016/j.phrs.2019.04.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Praveen P, Kocan M, Valkovic A, Bathgate R, Hossain MA. Single chain peptide agonists of relaxin receptors. Molecular and Cellular Endocrinology 2019;487:34-9. [DOI: 10.1016/j.mce.2019.01.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
22 Mita M, Nakamura K, Tsutsui K, Katayama H. Interaction of starfish gonadotropin with its receptor: Effect of chimeric relaxin-like gonad-stimulating peptides. General and Comparative Endocrinology 2019;276:30-6. [DOI: 10.1016/j.ygcen.2019.02.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wang J, Nie W, Shao X, Li H, Hu M, Liu Y, Xu Z, Guo Z. Exploring electrostatic interactions of relaxin family peptide receptor 3 and 4 with ligands using a NanoBiT-based binding assay. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019;1861:776-86. [DOI: 10.1016/j.bbamem.2019.01.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Castro-arnau J, Marín A, Castells M, Ferrer I, Maestro JL. The expression of cockroach insulin-like peptides is differentially regulated by physiological conditions and affected by compensatory regulation. Journal of Insect Physiology 2019;114:57-67. [DOI: 10.1016/j.jinsphys.2019.02.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Mita M. Starfish Gonadotropic Hormone: From Gamete-Shedding Substance to Relaxin-Like Gonad-Stimulating Peptide. Front Endocrinol (Lausanne) 2019;10:182. [PMID: 30967842 DOI: 10.3389/fendo.2019.00182] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P, Rozhitskaya O, Su L, Tomlinson E, Wallace I. Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett 2019;29:991-4. [PMID: 30824200 DOI: 10.1016/j.bmcl.2019.02.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
27 Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018;39:221-39. [PMID: 29385433 DOI: 10.1210/er.2017-00147] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wong LLL, Scott DJ, Hossain MA, Kaas Q, Rosengren KJ, Bathgate RAD. Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor. J Biol Chem 2018;293:15777-89. [PMID: 30131340 DOI: 10.1074/jbc.RA118.002645] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
29 Haugaard-Kedström LM, Lee HS, Jones MV, Song A, Rathod V, Hossain MA, Bathgate RAD, Rosengren KJ. Binding conformation and determinants of a single-chain peptide antagonist at the relaxin-3 receptor RXFP3. J Biol Chem 2018;293:15765-76. [PMID: 30131342 DOI: 10.1074/jbc.RA118.002611] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
30 Fue M, Miki Y, Takagi K, Hashimoto C, Yaegashi N, Suzuki T, Ito K. Relaxin 2/RXFP1 Signaling Induces Cell Invasion via the β-Catenin Pathway in Endometrial Cancer. Int J Mol Sci 2018;19:E2438. [PMID: 30126180 DOI: 10.3390/ijms19082438] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
31 Wang JH, Hu MJ, Zhang L, Shao XX, Lv CH, Liu YL, Xu ZG, Guo ZY. Exploring receptor selectivity of the chimeric relaxin family peptide R3/I5 by incorporating unnatural amino acids. Biochimie 2018;154:77-85. [PMID: 30102931 DOI: 10.1016/j.biochi.2018.08.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
32 You X, Guo ZF, Cheng F, Yi B, Yang F, Liu X, Zhu N, Zhao X, Yan G, Ma XL, Sun J. Transcriptional up-regulation of relaxin-3 by Nur77 attenuates β-adrenergic agonist-induced apoptosis in cardiomyocytes. J Biol Chem 2018;293:14001-11. [PMID: 30006349 DOI: 10.1074/jbc.RA118.003099] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
33 Wilson KJ, Xiao J, Chen CZ, Huang Z, Agoulnik IU, Ferrer M, Southall N, Hu X, Zheng W, Xu X, Wang A, Myhr C, Barnaeva E, George ER, Agoulnik AI, Marugan JJ. Optimization of the first small-molecule relaxin/insulin-like family peptide receptor (RXFP1) agonists: Activation results in an antifibrotic gene expression profile. Eur J Med Chem 2018;156:79-92. [PMID: 30006176 DOI: 10.1016/j.ejmech.2018.06.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
34 Hu MJ, Shao XX, Li HZ, Nie WH, Wang JH, Liu YL, Xu ZG, Guo ZY. Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids 2018;50:1111-9. [PMID: 29770870 DOI: 10.1007/s00726-018-2588-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
35 Wang JH, Hu MJ, Shao XX, Wei D, Liu YL, Xu ZG, Guo ZY. Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch Biochem Biophys 2018;646:24-30. [PMID: 29601823 DOI: 10.1016/j.abb.2018.03.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Summers RJ. Recent progress in the understanding of relaxin family peptides and their receptors. Br J Pharmacol. 2017;174:915-920. [PMID: 28447360 DOI: 10.1111/bph.13778] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
37 de Ávila C, Chometton S, Lenglos C, Calvez J, Gundlach AL, Timofeeva E. Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behavioural Brain Research 2018;336:135-44. [DOI: 10.1016/j.bbr.2017.08.044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
38 Yeganeh IS, Taromchi AH, Fathabadi FF, Nejatbakhsh R, Novin MG, Shokri S. Expression and localization of relaxin family peptide receptor 4 in human spermatozoa and impact of insulin-like peptide 5 on sperm functions. Reprod Biol 2017;17:327-32. [PMID: 28986276 DOI: 10.1016/j.repbio.2017.09.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
39 Hossain MA, Bathgate RAD. Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorg Med Chem 2018;26:2827-41. [PMID: 28988628 DOI: 10.1016/j.bmc.2017.09.030] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
40 Hossain MA, Wade JD. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres. Acc Chem Res 2017;50:2116-27. [PMID: 28829564 DOI: 10.1021/acs.accounts.7b00288] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
41 Koehbach J. Structure-Activity Relationships of Insect Defensins. Front Chem 2017;5:45. [PMID: 28748179 DOI: 10.3389/fchem.2017.00045] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
42 Wang J, Shao X, Hu M, Wei D, Nie W, Liu Y, Xu Z, Guo Z. Rapid preparation of bioluminescent tracers for relaxin family peptides using sortase-catalysed ligation. Amino Acids 2017;49:1611-7. [DOI: 10.1007/s00726-017-2455-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
43 Wei D, Hu MJ, Shao XX, Wang JH, Nie WH, Liu YL, Xu ZG, Guo ZY. Development of a selective agonist for relaxin family peptide receptor 3. Sci Rep 2017;7:3230. [PMID: 28607363 DOI: 10.1038/s41598-017-03465-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
44 Patil NA, Rosengren KJ, Separovic F, Wade JD, Bathgate RAD, Hossain MA. Relaxin family peptides: structure-activity relationship studies. Br J Pharmacol 2017;174:950-61. [PMID: 27922185 DOI: 10.1111/bph.13684] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]