BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022;79:492. [PMID: 35997826 DOI: 10.1007/s00018-022-04451-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Szlaga A, Sambak P, Gugula A, Trenk A, Gundlach AL, Blasiak A. Catecholaminergic innervation and D2-like dopamine receptor-mediated modulation of brainstem nucleus incertus neurons in the rat. Neuropharmacology 2022;218:109216. [PMID: 35973599 DOI: 10.1016/j.neuropharm.2022.109216] [Reference Citation Analysis]
3 Noda M, Matsuda T. Central regulation of body fluid homeostasis. Proc Jpn Acad Ser B Phys Biol Sci 2022;98:283-324. [PMID: 35908954 DOI: 10.2183/pjab.98.016] [Reference Citation Analysis]
4 Gay EA, Guan D, Van Voorhies K, Vasukuttan V, Mathews KM, Besheer J, Jin C. Discovery and Characterization of the First Nonpeptide Antagonists for the Relaxin-3/RXFP3 System. J Med Chem 2022. [PMID: 35594150 DOI: 10.1021/acs.jmedchem.2c00508] [Reference Citation Analysis]
5 Szlaga A, Sambak P, Trenk A, Gugula A, Singleton CE, Drwiega G, Blasiak T, Ma S, Gundlach AL, Blasiak A. Functional Neuroanatomy of the Rat Nucleus Incertus–Medial Septum Tract: Implications for the Cell-Specific Control of the Septohippocampal Pathway. Front Cell Neurosci 2022;16:836116. [DOI: 10.3389/fncel.2022.836116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Guan D, Rahman MT, Gay EA, Vasukuttan V, Mathews KM, Decker AM, Williams AH, Zhan CG, Jin C. Indole-Containing Amidinohydrazones as Nonpeptide, Dual RXFP3/4 Agonists: Synthesis, Structure-Activity Relationship, and Molecular Modeling Studies. J Med Chem 2021;64:17866-86. [PMID: 34855388 DOI: 10.1021/acs.jmedchem.1c01081] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Lin G, Feng Y, Cai X, Zhou C, Shao L, Chen Y, Chen L, Liu Q, Zhou Q, Bathgate RAD, Yang D, Wang MW. High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules 2021;26:7511. [PMID: 34946593 DOI: 10.3390/molecules26247511] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021;2021:3651735. [PMID: 34539776 DOI: 10.1155/2021/3651735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021;131:429-50. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Yan Y, Martinez R, Rasheed MN, Cahal J, Xu Z, Rui Y, Qualmann KJ, Hagan JP, Kim DH. Germline and somatic mutations in the pathology of pineal cyst: A whole-exome sequencing study of 93 individuals. Mol Genet Genomic Med 2021;9:e1691. [PMID: 33943042 DOI: 10.1002/mgg3.1691] [Reference Citation Analysis]
11 Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021;15:637922. [PMID: 33867946 DOI: 10.3389/fnana.2021.637922] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021;157:1615-43. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
13 Voglsanger LM, Read J, Ch'ng SS, Zhang C, Eraslan IM, Gray L, Rivera LR, Hamilton LD, Williams R, Gundlach AL, Smith CM. Differential Level of RXFP3 Expression in Dopaminergic Neurons Within the Arcuate Nucleus, Dorsomedial Hypothalamus and Ventral Tegmental Area of RXFP3-Cre/tdTomato Mice. Front Neurosci 2020;14:594818. [PMID: 33584175 DOI: 10.3389/fnins.2020.594818] [Reference Citation Analysis]
14 Li HZ, Li N, Shao XX, Liu YL, Xu ZG, Guo ZY. Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay. Biochimie 2020;177:117-26. [PMID: 32810565 DOI: 10.1016/j.biochi.2020.08.008] [Reference Citation Analysis]
15 Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL, Blasiak A. RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J Neurosci 2020;40:5362-75. [PMID: 32532885 DOI: 10.1523/JNEUROSCI.2895-19.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
16 Eastman G, Valiño G, Radío S, Young RL, Quintana L, Zakon HH, Hofmann HA, Sotelo-Silveira J, Silva A. Brain transcriptomics of agonistic behaviour in the weakly electric fish Gymnotus omarorum, a wild teleost model of non-breeding aggression. Sci Rep 2020;10:9496. [PMID: 32528029 DOI: 10.1038/s41598-020-66494-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
17 Pinar AA, Scott TE, Huuskes BM, Tapia Cáceres FE, Kemp-harper BK, Samuel CS. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacology & Therapeutics 2020;209:107511. [DOI: 10.1016/j.pharmthera.2020.107511] [Cited by in Crossref: 25] [Cited by in F6Publishing: 40] [Article Influence: 12.5] [Reference Citation Analysis]
18 Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020;32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020;8:87. [PMID: 32133341 DOI: 10.3389/fchem.2020.00087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
20 de Ávila C, Chometton S, Ma S, Pedersen LT, Timofeeva E, Cifani C, Gundlach AL. Effects of chronic silencing of relaxin-3 production in nucleus incertus neurons on food intake, body weight, anxiety-like behaviour and limbic brain activity in female rats. Psychopharmacology 2020;237:1091-106. [DOI: 10.1007/s00213-019-05439-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2020;8:1-10. [PMID: 31890981 DOI: 10.1016/j.ibror.2019.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Furuya WI, Dhingra RR, Gundlach AL, Hossain MA, Dutschmann M. Relaxin-3 receptor (RXFP3) activation in the nucleus of the solitary tract modulates respiratory rate and the arterial chemoreceptor reflex in rat. Respir Physiol Neurobiol 2020;271:103310. [PMID: 31568840 DOI: 10.1016/j.resp.2019.103310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
23 Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019;176:3899-923. [PMID: 31220339 DOI: 10.1111/bph.14774] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
24 Mucke HA. Patent Highlights April–May 2019. Pharmaceutical Patent Analyst 2019;8:165-73. [DOI: 10.4155/ppa-2019-0015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Paul EJ, Tossell K, Ungless MA. Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. Eur J Neurosci 2019;50:3732-49. [PMID: 31374129 DOI: 10.1111/ejn.14534] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
26 Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019;13:30. [PMID: 30906254 DOI: 10.3389/fnana.2019.00030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
27 Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE. Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct 2019;224:453-69. [PMID: 30368554 DOI: 10.1007/s00429-018-1763-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
28 Lawther AJ, Flavell A, Ma S, Kent S, Lowry CA, Gundlach AL, Hale MW. Involvement of Serotonergic and Relaxin-3 Neuropeptide Systems in the Expression of Anxiety-like Behavior. Neuroscience 2018;390:88-103. [DOI: 10.1016/j.neuroscience.2018.08.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
29 García-Díaz C, Sánchez-Catalán MJ, Castro-Salazar E, García-Avilés A, Albert-Gascó H, Sánchez-Sarasúa de la Bárcena S, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE. Nucleus incertus ablation disrupted conspecific recognition and modified immediate early gene expression patterns in 'social brain' circuits of rats. Behav Brain Res 2019;356:332-47. [PMID: 30195021 DOI: 10.1016/j.bbr.2018.08.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
30 Sabetghadam A, Grabowiecka-nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018;139:238-56. [DOI: 10.1016/j.neuropharm.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
31 Bathgate RA, Kocan M, Scott DJ, Hossain MA, Good SV, Yegorov S, Bogerd J, Gooley PR. The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. Pharmacology & Therapeutics 2018;187:114-32. [DOI: 10.1016/j.pharmthera.2018.02.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
32 Hu M, Wang J, Shao X, Liu Y, Xu Z, Guo Z. Overexpression of relaxin family peptide receptor 3 in Escherichia coli and characterization of its ligand binding properties. Process Biochemistry 2018;69:131-5. [DOI: 10.1016/j.procbio.2018.03.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Hu MJ, Shao XX, Li HZ, Nie WH, Wang JH, Liu YL, Xu ZG, Guo ZY. Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids 2018;50:1111-9. [PMID: 29770870 DOI: 10.1007/s00726-018-2588-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
34 Wang JH, Hu MJ, Shao XX, Wei D, Liu YL, Xu ZG, Guo ZY. Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch Biochem Biophys 2018;646:24-30. [PMID: 29601823 DOI: 10.1016/j.abb.2018.03.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018;24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
36 Summers RJ. Recent progress in the understanding of relaxin family peptides and their receptors. Br J Pharmacol. 2017;174:915-920. [PMID: 28447360 DOI: 10.1111/bph.13778] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
37 de Ávila C, Chometton S, Lenglos C, Calvez J, Gundlach AL, Timofeeva E. Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behavioural Brain Research 2018;336:135-44. [DOI: 10.1016/j.bbr.2017.08.044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
38 Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018;85:21-33. [PMID: 28757457 DOI: 10.1016/j.neubiorev.2017.07.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
39 Wei D, Hu MJ, Shao XX, Wang JH, Nie WH, Liu YL, Xu ZG, Guo ZY. Development of a selective agonist for relaxin family peptide receptor 3. Sci Rep 2017;7:3230. [PMID: 28607363 DOI: 10.1038/s41598-017-03465-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
40 Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017;11:127. [PMID: 28373831 DOI: 10.3389/fnins.2017.00127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
41 Zhang C, Baimoukhametova DV, Smith CM, Bains JS, Gundlach AL. Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology (Berl) 2017;234:1725-39. [PMID: 28314951 DOI: 10.1007/s00213-017-4575-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
42 Wang JH, Shao XX, Hu MJ, Wei D, Liu YL, Xu ZG, Guo ZY. A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands. Amino Acids 2017;49:895-903. [PMID: 28161795 DOI: 10.1007/s00726-017-2387-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
43 Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]