BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2017;174:1061-76. [PMID: 27597467 DOI: 10.1111/bph.13564] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022;79:492. [PMID: 35997826 DOI: 10.1007/s00018-022-04451-7] [Reference Citation Analysis]
2 Gay EA, Guan D, Van Voorhies K, Vasukuttan V, Mathews KM, Besheer J, Jin C. Discovery and Characterization of the First Nonpeptide Antagonists for the Relaxin-3/RXFP3 System. J Med Chem 2022. [PMID: 35594150 DOI: 10.1021/acs.jmedchem.2c00508] [Reference Citation Analysis]
3 Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022;23:4387. [PMID: 35457203 DOI: 10.3390/ijms23084387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Guan D, Rahman MT, Gay EA, Vasukuttan V, Mathews KM, Decker AM, Williams AH, Zhan CG, Jin C. Indole-Containing Amidinohydrazones as Nonpeptide, Dual RXFP3/4 Agonists: Synthesis, Structure-Activity Relationship, and Molecular Modeling Studies. J Med Chem 2021;64:17866-86. [PMID: 34855388 DOI: 10.1021/acs.jmedchem.1c01081] [Reference Citation Analysis]
5 Lin G, Feng Y, Cai X, Zhou C, Shao L, Chen Y, Chen L, Liu Q, Zhou Q, Bathgate RAD, Yang D, Wang MW. High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules 2021;26:7511. [PMID: 34946593 DOI: 10.3390/molecules26247511] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Boehler NA, Fung SW, Hegazi S, Cheng AH, Cheng HM. Sox2 Ablation in the Suprachiasmatic Nucleus Perturbs Anxiety- and Depressive-like Behaviors. Neurol Int 2021;13:541-54. [PMID: 34842772 DOI: 10.3390/neurolint13040054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021;2021:3651735. [PMID: 34539776 DOI: 10.1155/2021/3651735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021;131:429-50. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Reference Citation Analysis]
9 Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021;15:637922. [PMID: 33867946 DOI: 10.3389/fnana.2021.637922] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
10 Southey BR, Zhang P, Keever MR, Rymut HE, Johnson RW, Sweedler JV, Rodriguez-Zas SL. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J Integr Neurosci 2021;20:21-31. [PMID: 33834688 DOI: 10.31083/j.jin.2021.01.332] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Li HZ, Li N, Shao XX, Liu YL, Xu ZG, Guo ZY. Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay. Biochimie 2020;177:117-26. [PMID: 32810565 DOI: 10.1016/j.biochi.2020.08.008] [Reference Citation Analysis]
12 Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL, Blasiak A. RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J Neurosci 2020;40:5362-75. [PMID: 32532885 DOI: 10.1523/JNEUROSCI.2895-19.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
13 Eiden LE, Gundlach AL, Grinevich V, Lee MR, Mecawi AS, Chen D, Buijs RM, Hernandez VS, Fajardo-Dolci G, Zhang L. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology. J Neuroendocrinol 2020;32:e12844. [PMID: 32307768 DOI: 10.1111/jne.12844] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020;8:87. [PMID: 32133341 DOI: 10.3389/fchem.2020.00087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
15 de Ávila C, Chometton S, Ma S, Pedersen LT, Timofeeva E, Cifani C, Gundlach AL. Effects of chronic silencing of relaxin-3 production in nucleus incertus neurons on food intake, body weight, anxiety-like behaviour and limbic brain activity in female rats. Psychopharmacology 2020;237:1091-106. [DOI: 10.1007/s00213-019-05439-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2020;8:1-10. [PMID: 31890981 DOI: 10.1016/j.ibror.2019.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 van Gastel J, Cai H, Cong WN, Chadwick W, Daimon C, Leysen H, Hendrickx JO, De Schepper R, Vangenechten L, Van Turnhout J, Verswyvel J, Becker KG, Zhang Y, Lehrmann E, Wood WH 3rd, Martin B, Maudsley S. Multidimensional informatic deconvolution defines gender-specific roles of hypothalamic GIT2 in aging trajectories. Mech Ageing Dev 2019;184:111150. [PMID: 31574270 DOI: 10.1016/j.mad.2019.111150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019;176:3899-923. [PMID: 31220339 DOI: 10.1111/bph.14774] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
19 Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019;487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019;13:30. [PMID: 30906254 DOI: 10.3389/fnana.2019.00030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
21 DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P, Rozhitskaya O, Su L, Tomlinson E, Wallace I. Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett 2019;29:991-4. [PMID: 30824200 DOI: 10.1016/j.bmcl.2019.02.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
22 Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiological Reviews 2018;98:2225-86. [DOI: 10.1152/physrev.00042.2017] [Cited by in Crossref: 80] [Cited by in F6Publishing: 95] [Article Influence: 20.0] [Reference Citation Analysis]
23 Sabetghadam A, Grabowiecka-nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018;139:238-56. [DOI: 10.1016/j.neuropharm.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
24 Bathgate RA, Kocan M, Scott DJ, Hossain MA, Good SV, Yegorov S, Bogerd J, Gooley PR. The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. Pharmacology & Therapeutics 2018;187:114-32. [DOI: 10.1016/j.pharmthera.2018.02.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
25 Hu M, Wang J, Shao X, Liu Y, Xu Z, Guo Z. Overexpression of relaxin family peptide receptor 3 in Escherichia coli and characterization of its ligand binding properties. Process Biochemistry 2018;69:131-5. [DOI: 10.1016/j.procbio.2018.03.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
26 Wang JH, Hu MJ, Shao XX, Wei D, Liu YL, Xu ZG, Guo ZY. Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch Biochem Biophys 2018;646:24-30. [PMID: 29601823 DOI: 10.1016/j.abb.2018.03.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018;24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
28 Thunders M, Chinn V, Bilewitch J, Stockwell P. Identification of potential 'lifestyle-responsive' epigenomic biomarkers in healthy women aged 18-40. Biomarkers 2018;23:453-61. [PMID: 29460649 DOI: 10.1080/1354750X.2018.1443512] [Reference Citation Analysis]
29 Summers RJ. Recent progress in the understanding of relaxin family peptides and their receptors. Br J Pharmacol. 2017;174:915-920. [PMID: 28447360 DOI: 10.1111/bph.13778] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
30 de Ávila C, Chometton S, Lenglos C, Calvez J, Gundlach AL, Timofeeva E. Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behavioural Brain Research 2018;336:135-44. [DOI: 10.1016/j.bbr.2017.08.044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
31 Wei D, Hu MJ, Shao XX, Wang JH, Nie WH, Liu YL, Xu ZG, Guo ZY. Development of a selective agonist for relaxin family peptide receptor 3. Sci Rep 2017;7:3230. [PMID: 28607363 DOI: 10.1038/s41598-017-03465-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
32 Wang JH, Shao XX, Hu MJ, Wei D, Liu YL, Xu ZG, Guo ZY. A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands. Amino Acids 2017;49:895-903. [PMID: 28161795 DOI: 10.1007/s00726-017-2387-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
33 Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
34 Walker LC, Lawrence AJ. CRF and the nucleus incertus: a node for integration of stress signals. Nat Rev Neurosci 2017;18:158-158. [DOI: 10.1038/nrn.2016.158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
35 Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2017;174:1061-76. [PMID: 27597467 DOI: 10.1111/bph.13564] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]