BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KD. Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 2016;173:3028-37. [PMID: 26317175 DOI: 10.1111/bph.13316] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 9.4] [Reference Citation Analysis]
Number Citing Articles
1 Cheignon C, Cordeau E, Prache N, Cantel S, Martinez J, Subra G, Arnaudguilhem C, Bouyssiere B, Enjalbal C. Receptor-Ligand Interaction Measured by Inductively Coupled Plasma Mass Spectrometry and Selenium Labeling. J Med Chem 2018;61:10173-84. [PMID: 30395477 DOI: 10.1021/acs.jmedchem.8b01320] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
2 Federico S, Spalluto G. Functionalized ligands targeting G protein-coupled adenosine receptors. Future Med Chem 2019;11:1673-7. [PMID: 31317789 DOI: 10.4155/fmc-2019-0133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Goulding J, Mistry SJ, Soave M, Woolard J, Briddon SJ, White CW, Kellam B, Hill SJ. Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2-adrenoceptor in CRISPR/Cas9 genome-edited HEK293T cells at low expression levels. Pharmacol Res Perspect 2021;9:e00779. [PMID: 34003582 DOI: 10.1002/prp2.779] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Gruber CG, Pegoli A, Müller C, Grätz L, She X, Keller M. Differently fluorescence-labelled dibenzodiazepinone-type muscarinic acetylcholine receptor ligands with high M2R affinity. RSC Med Chem 2020;11:823-32. [PMID: 33479678 DOI: 10.1039/d0md00137f] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Link R, Veiksina S, Rinken A, Kopanchuk S. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties. European Journal of Pharmacology 2017;799:58-66. [DOI: 10.1016/j.ejphar.2017.01.040] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
6 Ayoub MA. Resonance Energy Transfer-Based Approaches to Study GPCRs. Methods Cell Biol 2016;132:255-92. [PMID: 26928548 DOI: 10.1016/bs.mcb.2015.10.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
7 Reiner D, Stark H. Ligand binding kinetics at histamine H3 receptors by fluorescence-polarization with real-time monitoring. European Journal of Pharmacology 2019;848:112-20. [DOI: 10.1016/j.ejphar.2019.01.041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
8 Lukonin I, Zinner M, Liberali P. Organoids in image-based phenotypic chemical screens. Exp Mol Med 2021;53:1495-502. [PMID: 34663938 DOI: 10.1038/s12276-021-00641-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Aldewachi H, Al-Zidan RN, Conner MT, Salman MM. High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering (Basel) 2021;8:30. [PMID: 33672148 DOI: 10.3390/bioengineering8020030] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 31.0] [Reference Citation Analysis]
10 White CW, Kilpatrick LE, Pfleger KDG, Hill SJ. A nanoluciferase biosensor to investigate endogenous chemokine secretion and receptor binding. iScience 2021;24:102011. [PMID: 33490919 DOI: 10.1016/j.isci.2020.102011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Schoofs G, Van Hout A, D'huys T, Schols D, Van Loy T. A Flow Cytometry-based Assay to Identify Compounds That Disrupt Binding of Fluorescently-labeled CXC Chemokine Ligand 12 to CXC Chemokine Receptor 4. J Vis Exp 2018. [PMID: 29578516 DOI: 10.3791/57271] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
12 Singh S, Cooper S, Glenn JR, Beresford J, Percival LR, Tyndall JDA, Hill SJ, Kilpatrick LE, Vernall AJ. Synthesis of novel (benzimidazolyl)isoquinolinols and evaluation as adenosine A1 receptor tools. RSC Adv 2018;8:16362-9. [DOI: 10.1039/c7ra13148h] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol 2020;177:978-91. [PMID: 31877233 DOI: 10.1111/bph.14953] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
14 Stoddart LA, Vernall AJ, Bouzo-Lorenzo M, Bosma R, Kooistra AJ, de Graaf C, Vischer HF, Leurs R, Briddon SJ, Kellam B, Hill SJ. Development of novel fluorescent histamine H1-receptor antagonists to study ligand-binding kinetics in living cells. Sci Rep 2018;8:1572. [PMID: 29371669 DOI: 10.1038/s41598-018-19714-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
15 Jakubík J, Randáková A, El-Fakahany EE, Doležal V. Analysis of equilibrium binding of an orthosteric tracer and two allosteric modulators. PLoS One 2019;14:e0214255. [PMID: 30917186 DOI: 10.1371/journal.pone.0214255] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
16 Blay V, Tolani B, Ho SP, Arkin MR. High-Throughput Screening: today's biochemical and cell-based approaches. Drug Discov Today 2020:S1359-6446(20)30305-6. [PMID: 32801051 DOI: 10.1016/j.drudis.2020.07.024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Wolfe AJ, Parella KJ, Movileanu L. High-Throughput Screening of Protein-Detergent Complexes Using Fluorescence Polarization Spectroscopy. Curr Protoc Protein Sci 2019;97:e96. [PMID: 31517448 DOI: 10.1002/cpps.96] [Reference Citation Analysis]
18 Tahk M, Torp J, Ali MAS, Fishman D, Parts L, Grätz L, Müller C, Keller M, Veiksina S, Laasfeld T, Rinken A. Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M 4 muscarinic receptors? Open Biol 2022;12:220019. [DOI: 10.1098/rsob.220019] [Reference Citation Analysis]
19 Buntru A, Trepte P, Klockmeier K, Schnoegl S, Wanker EE. Current Approaches Toward Quantitative Mapping of the Interactome. Front Genet 2016;7:74. [PMID: 27200083 DOI: 10.3389/fgene.2016.00074] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
20 Wolfe AJ, Hsueh YC, Blanden AR, Mohammad MM, Pham B, Thakur AK, Loh SN, Chen M, Movileanu L. Interrogating Detergent Desolvation of Nanopore-Forming Proteins by Fluorescence Polarization Spectroscopy. Anal Chem 2017;89:8013-20. [PMID: 28650154 DOI: 10.1021/acs.analchem.7b01339] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
21 El Khamlichi C, Reverchon-Assadi F, Hervouet-Coste N, Blot L, Reiter E, Morisset-Lopez S. Bioluminescence Resonance Energy Transfer as a Method to Study Protein-Protein Interactions: Application to G Protein Coupled Receptor Biology. Molecules 2019;24:E537. [PMID: 30717191 DOI: 10.3390/molecules24030537] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
22 Kauk M, Hoffmann C. Intramolecular and Intermolecular FRET Sensors for GPCRs - Monitoring Conformational Changes and Beyond. Trends Pharmacol Sci 2018;39:123-35. [PMID: 29180026 DOI: 10.1016/j.tips.2017.10.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
23 Pelosi P, Zhu J, Knoll W. From radioactive ligands to biosensors: binding methods with olfactory proteins. Appl Microbiol Biotechnol 2018;102:8213-27. [PMID: 30054700 DOI: 10.1007/s00253-018-9253-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
24 Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Sadiq SK, Bosma R, Nederpelt I, Heitman LH, Segala E, Amaral M, Guo D, Andres D, Georgi V, Stoddart LA, Hill S, Cooke RM, De Graaf C, Leurs R, Frech M, Wade RC, de Lange ECM, IJzerman AP, Müller-Fahrnow A, Ecker GF. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today 2017;22:896-911. [PMID: 28412474 DOI: 10.1016/j.drudis.2017.02.002] [Cited by in Crossref: 101] [Cited by in F6Publishing: 74] [Article Influence: 20.2] [Reference Citation Analysis]
25 Conner JW, Poole DP, Jörg M, Veldhuis NA. New small molecule fluorescent probes for G protein-coupled receptors: valuable tools for drug discovery. Future Med Chem 2021;13:63-90. [PMID: 33319586 DOI: 10.4155/fmc-2019-0327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wolfe AJ, Si W, Zhang Z, Blanden AR, Hsueh YC, Gugel JF, Pham B, Chen M, Loh SN, Rozovsky S, Aksimentiev A, Movileanu L. Quantification of Membrane Protein-Detergent Complex Interactions. J Phys Chem B 2017;121:10228-41. [PMID: 29035562 DOI: 10.1021/acs.jpcb.7b08045] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
27 Pineda JJ, Miller MA, Song Y, Kuhn H, Mikula H, Tallapragada N, Weissleder R, Mitchison TJ. Site occupancy calibration of taxane pharmacology in live cells and tissues. Proc Natl Acad Sci U S A 2018;115:E11406-14. [PMID: 30429313 DOI: 10.1073/pnas.1800047115] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
28 Uddin R, Simms J, Poyner D. Functional characterisation of G protein-coupled receptors. Methods 2018;147:213-20. [PMID: 29510249 DOI: 10.1016/j.ymeth.2018.02.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
29 Hamilton AJ, Payne AD, Mocerino M, Gunosewoyo H. Imaging Cannabinoid Receptors: A Brief Collection of Covalent and Fluorescent Probes for CB1 and CB2 Receptors. Aust J Chem 2021;74:416. [DOI: 10.1071/ch21007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Comparison of the ligand-binding properties of fluorescent VEGF-A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET. Br J Pharmacol 2019;176:3220-35. [PMID: 31162634 DOI: 10.1111/bph.14755] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Killoran MP, Levin S, Boursier ME, Zimmerman K, Hurst R, Hall MP, Machleidt T, Kirkland TA, Friedman Ohana R. An Integrated Approach toward NanoBRET Tracers for Analysis of GPCR Ligand Engagement. Molecules 2021;26:2857. [PMID: 34065854 DOI: 10.3390/molecules26102857] [Reference Citation Analysis]
32 Duan X, Chen Z, Tang S, Ge M, Wei H, Guan Y, Zhao G. A Strategy Employing a TF-Splinting Duplex Nanoswitch to Achieve Single-Step, Enzyme-Free, Signal-On Detection of l-Tryptophan. ACS Sens 2020;5:837-44. [PMID: 32096406 DOI: 10.1021/acssensors.0c00002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
33 Grätz L, Laasfeld T, Allikalt A, Gruber CG, Pegoli A, Tahk MJ, Tsernant ML, Keller M, Rinken A. BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M2 muscarinic acetylcholine receptors. Biochim Biophys Acta Mol Cell Res 2021;1868:118930. [PMID: 33347921 DOI: 10.1016/j.bbamcr.2020.118930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Liu Y, Zeng H, Pediani JD, Ward RJ, Chen LY, Wu N, Ma L, Tang M, Yang Y, An S, Guo XX, Hao Q, Xu TR. Visualization of the activation of the histamine H3 receptor (H3R) using novel fluorescence resonance energy transfer biosensors and their potential application to the study of H3R pharmacology. FEBS J 2018;285:2319-36. [PMID: 29701013 DOI: 10.1111/febs.14484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Bouzo-Lorenzo M, Stoddart LA, Xia L, IJzerman AP, Heitman LH, Briddon SJ, Hill SJ. A live cell NanoBRET binding assay allows the study of ligand-binding kinetics to the adenosine A3 receptor. Purinergic Signal 2019;15:139-53. [PMID: 30919204 DOI: 10.1007/s11302-019-09650-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
36 Boursier ME, Levin S, Hurst R, Ohana RF. Equilibrium and Kinetic Measurements of Ligand Binding to HiBiT-tagged GPCRs on the Surface of Living Cells. Bio Protoc 2020;10:e3861. [PMID: 33659503 DOI: 10.21769/BioProtoc.3861] [Reference Citation Analysis]
37 Hamilton LJ, Walker M, Pattabiraman M, Zhong HA, Luedtke B, Chandra S. Novel curcumin analog (cis-trans curcumin) as ligand to adenosine receptors A2A and A2B: potential for therapeutics. Pharmacol Res 2021;165:105410. [PMID: 33401004 DOI: 10.1016/j.phrs.2020.105410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Comeo E, Kindon ND, Soave M, Stoddart LA, Kilpatrick LE, Scammells PJ, Hill SJ, Kellam B. Subtype-Selective Fluorescent Ligands as Pharmacological Research Tools for the Human Adenosine A2A Receptor. J Med Chem 2020;63:2656-72. [PMID: 31887252 DOI: 10.1021/acs.jmedchem.9b01856] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
39 Tóth AD, Garger D, Prokop S, Soltész-Katona E, Várnai P, Balla A, Turu G, Hunyady L. A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase. J Biol Chem 2021;296:100366. [PMID: 33545176 DOI: 10.1016/j.jbc.2021.100366] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Lay CS, Thomas DA, Evans JP, Campbell M, McCombe K, Phillipou AN, Gordon LJ, Jones EJ, Riching K, Mahmood M, Messenger C, Carver CE, Gatfield KM, Craggs PD. Development of an intracellular quantitative assay to measure compound binding kinetics. Cell Chem Biol 2021:S2451-9456(21)00358-5. [PMID: 34520747 DOI: 10.1016/j.chembiol.2021.07.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Veeramani S, Blackwell SE, Thiel WH, Yang ZZ, Ansell SM, Giangrande PH, Weiner GJ. An RNA Aptamer-Based Biomarker Platform Demonstrates High Soluble CD25 Occupancy by IL2 in the Serum of Follicular Lymphoma Patients. Cancer Immunol Res 2019;7:1511-22. [PMID: 31383650 DOI: 10.1158/2326-6066.CIR-18-0821] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
42 Hoare BL, Bruell S, Sethi A, Gooley PR, Lew MJ, Hossain MA, Inoue A, Scott DJ, Bathgate RAD. Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. iScience 2019;11:93-113. [PMID: 30594862 DOI: 10.1016/j.isci.2018.12.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
43 Summers RJ. Molecular pharmacology of G protein-coupled receptors. Br J Pharmacol 2016;173:2931-3. [PMID: 27682321 DOI: 10.1111/bph.13610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
44 Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. IJMS 2022;23:5805. [DOI: 10.3390/ijms23105805] [Reference Citation Analysis]
45 Stoddart LA, Kilpatrick LE, Hill SJ. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol Sci 2018;39:136-47. [PMID: 29132917 DOI: 10.1016/j.tips.2017.10.006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 9.0] [Reference Citation Analysis]
46 Koretz KS, McGraw CE, Stradley S, Elbaradei A, Malmstadt N, Robinson AS. Characterization of binding kinetics of A2AR to Gαs protein by surface plasmon resonance. Biophys J 2021;120:1641-9. [PMID: 33675761 DOI: 10.1016/j.bpj.2021.02.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Dale NC, Johnstone EKM, White CW, Pfleger KDG. NanoBRET: The Bright Future of Proximity-Based Assays. Front Bioeng Biotechnol 2019;7:56. [PMID: 30972335 DOI: 10.3389/fbioe.2019.00056] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
48 Stoneman MR, Raicu V. Dielectric Spectroscopy Based Detection of Specific and Nonspecific Cellular Mechanisms. Sensors (Basel) 2021;21:3177. [PMID: 34063599 DOI: 10.3390/s21093177] [Reference Citation Analysis]
49 Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E. Binding affinity in drug design: experimental and computational techniques. Expert Opinion on Drug Discovery 2019;14:755-68. [DOI: 10.1080/17460441.2019.1623202] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
50 Alcobia DC, Ziegler AI, Kondrashov A, Comeo E, Mistry S, Kellam B, Chang A, Woolard J, Hill SJ, Sloan EK. Visualizing Ligand Binding to a GPCR In Vivo Using NanoBRET. iScience 2018;6:280-8. [PMID: 30240618 DOI: 10.1016/j.isci.2018.08.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
51 Soave M, Goulding J, Markus R, Hill SJ, Stoddart LA. Application of Fluorescent Purinoceptor Antagonists for Bioluminescence Resonance Energy Transfer Assays and Fluorescent Microscopy. Methods Mol Biol 2020;2041:163-81. [PMID: 31646488 DOI: 10.1007/978-1-4939-9717-6_12] [Reference Citation Analysis]
52 Federico S, Lassiani L, Spalluto G. Chemical Probes for the Adenosine Receptors. Pharmaceuticals (Basel) 2019;12:E168. [PMID: 31726680 DOI: 10.3390/ph12040168] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
53 Peach CJ, Kilpatrick LE, Friedman-Ohana R, Zimmerman K, Robers MB, Wood KV, Woolard J, Hill SJ. Real-Time Ligand Binding of Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in Living Cells. Cell Chem Biol 2018;25:1208-1218.e5. [PMID: 30057299 DOI: 10.1016/j.chembiol.2018.06.012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
54 Gabriel J, Höfner G, Wanner KT. A Library Screening Strategy Combining the Concepts of MS Binding Assays and Affinity Selection Mass Spectrometry. Front Chem 2019;7:665. [PMID: 31637233 DOI: 10.3389/fchem.2019.00665] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
55 Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG. Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int J Mol Sci 2021;22:1082. [PMID: 33499147 DOI: 10.3390/ijms22031082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Grätz L, Tropmann K, Bresinsky M, Müller C, Bernhardt G, Pockes S. NanoBRET binding assay for histamine H2 receptor ligands using live recombinant HEK293T cells. Sci Rep 2020;10:13288. [PMID: 32764682 DOI: 10.1038/s41598-020-70332-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
57 Wolfe AJ, Gugel JF, Chen M, Movileanu L. Kinetics of Membrane Protein-Detergent Interactions Depend on Protein Electrostatics. J Phys Chem B 2018;122:9471-81. [PMID: 30251852 DOI: 10.1021/acs.jpcb.8b07889] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
58 Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KD. Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 2016;173:3028-37. [PMID: 26317175 DOI: 10.1111/bph.13316] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 9.4] [Reference Citation Analysis]
59 Liu L, Boyd SD, Bulla LA Jr, Winkler DD. "The Defined Toxin-binding Region of the Cadherin G-protein Coupled Receptor, BT-R1, for the Active Cry1Ab Toxin of Bacillus thuringiensis". J Proteomics Bioinform 2018;11:201-10. [PMID: 30740004 DOI: 10.4172/0974-276X.1000487] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
60 Boursier ME, Levin S, Zimmerman K, Machleidt T, Hurst R, Butler BL, Eggers CT, Kirkland TA, Wood KV, Friedman Ohana R. The luminescent HiBiT peptide enables selective quantitation of G protein-coupled receptor ligand engagement and internalization in living cells. J Biol Chem 2020;295:5124-35. [PMID: 32107310 DOI: 10.1074/jbc.RA119.011952] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
61 Jennings BC, Lawton AJ, Rizk Z, Fierke CA. SmgGDS-607 Regulation of RhoA GTPase Prenylation Is Nucleotide-Dependent. Biochemistry 2018;57:4289-98. [PMID: 29940100 DOI: 10.1021/acs.biochem.8b00567] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
62 Ray M, Nagai K, Kihara Y, Kussrow A, Kammer MN, Frantz A, Bornhop DJ, Chun J. Unlabeled lysophosphatidic acid receptor binding in free solution as determined by a compensated interferometric reader. J Lipid Res 2020;61:1244-51. [PMID: 32513900 DOI: 10.1194/jlr.D120000880] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
63 She X, Pegoli A, Gruber CG, Wifling D, Carpenter J, Hübner H, Chen M, Wan J, Bernhardt G, Gmeiner P, Holliday ND, Keller M. Red-Emitting Dibenzodiazepinone Derivatives as Fluorescent Dualsteric Probes for the Muscarinic Acetylcholine M 2 Receptor. J Med Chem 2020;63:4133-54. [DOI: 10.1021/acs.jmedchem.9b02172] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 van Unen J, Rashidfarrokhi A, Hoogendoorn E, Postma M, Gadella TW Jr, Goedhart J. Quantitative Single-Cell Analysis of Signaling Pathways Activated Immediately Downstream of Histamine Receptor Subtypes. Mol Pharmacol 2016;90:162-76. [PMID: 27358232 DOI: 10.1124/mol.116.104505] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
65 Keller M, Mahuroof SA, Hong Yee V, Carpenter J, Schindler L, Littmann T, Pegoli A, Hübner H, Bernhardt G, Gmeiner P, Holliday ND. Fluorescence Labeling of Neurotensin(8-13) via Arginine Residues Gives Molecular Tools with High Receptor Affinity. ACS Med Chem Lett 2020;11:16-22. [PMID: 31938457 DOI: 10.1021/acsmedchemlett.9b00462] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
66 Arruda MA, Stoddart LA, Gherbi K, Briddon SJ, Kellam B, Hill SJ. A Non-imaging High Throughput Approach to Chemical Library Screening at the Unmodified Adenosine-A3 Receptor in Living Cells. Front Pharmacol 2017;8:908. [PMID: 29321740 DOI: 10.3389/fphar.2017.00908] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
67 Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017;69:316-53. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
68 Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021;27:8605-41. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]