BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mould R, Brown J, Marshall FH, Langmead CJ. Binding kinetics differentiates functional antagonism of orexin-2 receptor ligands. Br J Pharmacol 2014;171:351-63. [PMID: 23692283 DOI: 10.1111/bph.12245] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Strasser A, Wittmann HJ, Seifert R. Binding Kinetics and Pathways of Ligands to GPCRs. Trends Pharmacol Sci 2017;38:717-32. [PMID: 28645833 DOI: 10.1016/j.tips.2017.05.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 8.4] [Reference Citation Analysis]
2 Bosma R, Witt G, Vaas LAI, Josimovic I, Gribbon P, Vischer HF, Gul S, Leurs R. The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor. Front Pharmacol 2017;8:667. [PMID: 29033838 DOI: 10.3389/fphar.2017.00667] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
3 Khoo SY, McNally GP, Clemens KJ. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking. PLoS One 2017;12:e0173967. [PMID: 28296947 DOI: 10.1371/journal.pone.0173967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
4 Wang H, Li S, Kirouac GJ. Role of the orexin (hypocretin) system in contextual fear conditioning in rats. Behavioural Brain Research 2017;316:47-53. [DOI: 10.1016/j.bbr.2016.08.052] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
5 Suno R, Kimura KT, Nakane T, Yamashita K, Wang J, Fujiwara T, Yamanaka Y, Im D, Horita S, Tsujimoto H, Tawaramoto MS, Hirokawa T, Nango E, Tono K, Kameshima T, Hatsui T, Joti Y, Yabashi M, Shimamoto K, Yamamoto M, Rosenbaum DM, Iwata S, Shimamura T, Kobayashi T. Crystal Structures of Human Orexin 2 Receptor Bound to the Subtype-Selective Antagonist EMPA. Structure 2018;26:7-19.e5. [DOI: 10.1016/j.str.2017.11.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 9.5] [Reference Citation Analysis]
6 Guo D, Dijksteel GS, van Duijl T, Heezen M, Heitman LH, Ijzerman AP. Equilibrium and kinetic selectivity profiling on the human adenosine receptors. Biochemical Pharmacology 2016;105:34-41. [DOI: 10.1016/j.bcp.2016.02.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
7 Shimizu Y, Ishii T, Ogawa K, Sasaki S, Matsui H, Nakayama M. Biochemical characterization of smoothened receptor antagonists by binding kinetics against drug-resistant mutant. Eur J Pharmacol 2015;764:220-7. [PMID: 26048307 DOI: 10.1016/j.ejphar.2015.05.062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
8 Yu Z, IJzerman AP, Heitman LH. Kv 11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical Kv 11.1 (hERG) inhibitors. Br J Pharmacol 2015;172:940-55. [PMID: 25296617 DOI: 10.1111/bph.12967] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
9 Hellmann J, Drabek M, Yin J, Gunera J, Pröll T, Kraus F, Langmead CJ, Hübner H, Weikert D, Kolb P, Rosenbaum DM, Gmeiner P. Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proc Natl Acad Sci U S A 2020;117:18059-67. [PMID: 32669442 DOI: 10.1073/pnas.2002704117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
10 Sun Y, Dai C, Yin M, Lu J, Hu H, Chen D. Hepatocellular carcinoma-targeted effect of configurations and groups of glycyrrhetinic acid by evaluation of its derivative-modified liposomes. Int J Nanomedicine 2018;13:1621-32. [PMID: 29588589 DOI: 10.2147/IJN.S153944] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
11 Rasouli B, Rashvand M, Mousavi Z, Haghparast A. Role of orexin receptors within the dentate gyrus in antinociception induced by chemical stimulation of the lateral hypothalamus in an animal model of inflammatory pain. Peptides 2020;134:170401. [DOI: 10.1016/j.peptides.2020.170401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 He C, Chen QH, Ye JN, Li C, Yang L, Zhang J, Xia JX, Hu ZA. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study. Neuroscience 2015;297:1-10. [PMID: 25838117 DOI: 10.1016/j.neuroscience.2015.03.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
13 Nederpelt I, Bunnik J, Ijzerman AP, Heitman LH. Kinetic Profile of Neuropeptide–Receptor Interactions. Trends in Neurosciences 2016;39:830-9. [DOI: 10.1016/j.tins.2016.09.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
14 Hoare SR, Fleck BA, Williams JP, Grigoriadis DE. The importance of target binding kinetics for measuring target binding affinity in drug discovery: a case study from a CRF1 receptor antagonist program. Drug Discovery Today 2020;25:7-14. [DOI: 10.1016/j.drudis.2019.09.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
15 Ardeshiri MR, Hosseinmardi N, Akbari E. The effect of orexin 1 and orexin 2 receptors antagonisms in the basolateral amygdala on memory processing in a passive avoidance task. Physiology & Behavior 2017;174:42-8. [DOI: 10.1016/j.physbeh.2017.03.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
16 De Benedetti PG, Fanelli F. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery. Drug Discov Today 2018;23:1396-406. [PMID: 29574212 DOI: 10.1016/j.drudis.2018.03.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Nederpelt I, Bleeker D, Tuijt B, IJzerman AP, Heitman LH. Kinetic binding and activation profiles of endogenous tachykinins targeting the NK1 receptor. Biochem Pharmacol 2016;118:88-95. [PMID: 27501920 DOI: 10.1016/j.bcp.2016.08.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
18 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
19 Stott LA, Hall DA, Holliday ND. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data. Biochemical Pharmacology 2016;101:1-12. [DOI: 10.1016/j.bcp.2015.10.011] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
20 Sykes DA, Bradley ME, Riddy DM, Willard E, Reilly J, Miah A, Bauer C, Watson SJ, Sandham DA, Dubois G, Charlton SJ. Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy. Mol Pharmacol 2016;89:593-605. [DOI: 10.1124/mol.115.101832] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 6.3] [Reference Citation Analysis]
21 Liu C, Xia L, Fu K, Cao X, Yan W, Cheng J, Roux T, Peletier LA, Yin X, Guo D. Revisit ligand-receptor interaction at the human vasopressin V2 receptor: A kinetic perspective. Eur J Pharmacol 2020;880:173157. [PMID: 32360346 DOI: 10.1016/j.ejphar.2020.173157] [Reference Citation Analysis]
22 Khodabande F, Akbari E, Ardeshiri MR. The modulation of the spatial reference memory by the orexinergic system of the dorsal raphe nucleus. Life Sci 2021;265:118777. [PMID: 33220293 DOI: 10.1016/j.lfs.2020.118777] [Reference Citation Analysis]
23 Mocking TAM, Buzink MCML, Leurs R, Vischer HF. Bioluminescence Resonance Energy Transfer Based G Protein-Activation Assay to Probe Duration of Antagonism at the Histamine H3 Receptor. Int J Mol Sci 2019;20:E3724. [PMID: 31366084 DOI: 10.3390/ijms20153724] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
24 Wang L, Gu Y, Zhang J, Gong L. Effects of Sleep Deprivation (SD) on Rats via ERK1/2 Signaling Pathway. Med Sci Monit. 2019;25:2886-2895. [PMID: 31002658 DOI: 10.12659/msm.913839] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pan YP, Liu C, Liu MF, Wang Y, Bian K, Xue Y, Chen L. Involvement of orexin-A in the regulation of neuronal activity and emotional behaviors in central amygdala in rats. Neuropeptides 2020;80:102019. [PMID: 31980205 DOI: 10.1016/j.npep.2020.102019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
26 Barson JR, Ho HT, Leibowitz SF. Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: role of orexin receptor 2. Addict Biol 2015;20:469-81. [PMID: 24712379 DOI: 10.1111/adb.12139] [Cited by in Crossref: 77] [Cited by in F6Publishing: 78] [Article Influence: 9.6] [Reference Citation Analysis]
27 Riddy DM, Valant C, Rueda P, Charman WN, Sexton PM, Summers RJ, Christopoulos A, Langmead CJ. Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Mol Pharmacol 2015;88:779-90. [DOI: 10.1124/mol.115.100545] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
28 Shimizu Y, Ogawa K, Nakayama M. Characterization of Kinetic Binding Properties of Unlabeled Ligands via a Preincubation Endpoint Binding Approach. J Biomol Screen 2016;21:729-37. [PMID: 27270099 DOI: 10.1177/1087057116652065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
29 Guo D, Heitman LH, Ijzerman AP. The Role of Target Binding Kinetics in Drug Discovery. ChemMedChem 2015;10:1793-6. [DOI: 10.1002/cmdc.201500310] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
30 Sheng Q, Xue Y, Wang Y, Chen AQ, Liu C, Liu YH, Chu HY, Chen L. The Subthalamic Neurons are Activated by Both Orexin-A and Orexin-B. Neuroscience 2018;369:97-108. [PMID: 29138106 DOI: 10.1016/j.neuroscience.2017.11.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
31 Christopher JA, Aves SJ, Brown J, Errey JC, Klair SS, Langmead CJ, Mace OJ, Mould R, Patel JC, Tehan BG, Zhukov A, Marshall FH, Congreve M. Discovery of HTL6641, a dual orexin receptor antagonist with differentiated pharmacodynamic properties. Med Chem Commun 2015;6:947-55. [DOI: 10.1039/c5md00027k] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
32 Chan HCS, Pan L, Li Y, Yuan S. Rationalization of stereoselectivity in enzyme reactions. WIREs Comput Mol Sci 2019;9. [DOI: 10.1002/wcms.1403] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Guo D, Hillger JM, Ijzerman AP, Heitman LH. Drug-Target Residence Time-A Case for G Protein-Coupled Receptors: DRUG-TARGET RESIDENCE TIME. Med Res Rev 2014;34:856-92. [DOI: 10.1002/med.21307] [Cited by in Crossref: 118] [Cited by in F6Publishing: 105] [Article Influence: 14.8] [Reference Citation Analysis]
34 Farahimanesh S, Zarrabian S, Haghparast A. Role of orexin receptors in the ventral tegmental area on acquisition and expression of morphine-induced conditioned place preference in the rats. Neuropeptides 2017;66:45-51. [PMID: 28890208 DOI: 10.1016/j.npep.2017.08.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
35 Hoare SR. Receptor binding kinetics equations: Derivation using the Laplace transform method. Journal of Pharmacological and Toxicological Methods 2018;89:26-38. [DOI: 10.1016/j.vascn.2017.08.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
36 Haghparast A, Fatahi Z, Arezoomandan R, Karimi S, Taslimi Z, Zarrabian S. Functional roles of orexin/hypocretin receptors in reward circuit. Prog Brain Res 2017;235:139-54. [PMID: 29054286 DOI: 10.1016/bs.pbr.2017.08.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
37 Turku A, Leino TO, Karhu L, Yli-Kauhaluoma J, Kukkonen JP, Wallén EAA, Xhaard H. Structure-Activity Relationships of 1-Benzoylazulenes at the OX1 and OX2 Orexin Receptors. ChemMedChem 2019;14:965-81. [PMID: 30892823 DOI: 10.1002/cmdc.201900074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Riddy DM, Cook AE, Shackleford DM, Pierce TL, Mocaer E, Mannoury la Cour C, Sors A, Charman WN, Summers RJ, Sexton PM, Christopoulos A, Langmead CJ. Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology 2019;144:244-55. [PMID: 30359639 DOI: 10.1016/j.neuropharm.2018.10.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
39 Chen Y, Guo Y, Yan X, Zeng M, Chen H, Qiu D, Wang J. Orexin-A Excites Airway Vagal Preganglionic Neurons via Activation of Orexin Receptor Type 1 and Type 2 in Rats. Front Cell Neurosci 2019;13:478. [PMID: 31708749 DOI: 10.3389/fncel.2019.00478] [Reference Citation Analysis]
40 Olney JJ, Navarro M, Thiele TE. The Role of Orexin Signaling in the Ventral Tegmental Area and Central Amygdala in Modulating Binge-Like Ethanol Drinking Behavior. Alcohol Clin Exp Res 2017;41:551-61. [PMID: 28097729 DOI: 10.1111/acer.13336] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
41 Williams JT, Gatfield J, Roch C, Treiber A, Jenck F, Bolli MH, Brotschi C, Sifferlen T, Heidmann B, Boss C. Discovery and optimisation of 1-acyl-2-benzylpyrrolidines as potent dual orexin receptor antagonists. Med Chem Commun 2015;6:1054-64. [DOI: 10.1039/c5md00074b] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
42 Beuckmann CT, Suzuki M, Ueno T, Nagaoka K, Arai T, Higashiyama H. In Vitro and In Silico Characterization of Lemborexant (E2006), a Novel Dual Orexin Receptor Antagonist. J Pharmacol Exp Ther 2017;362:287-95. [PMID: 28559480 DOI: 10.1124/jpet.117.241422] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
43 Langmead CJ. From orphans to orexins: an arousing fifteen years: Editorial. Br J Pharmacol 2014;171:281-2. [DOI: 10.1111/bph.12556] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
44 Doornbos MLJ, Cid JM, Haubrich J, Nunes A, van de Sande JW, Vermond SC, Mulder-krieger T, Trabanco AA, Ahnaou A, Drinkenburg WH, Lavreysen H, Heitman LH, Ijzerman AP, Tresadern G. Discovery and Kinetic Profiling of 7-Aryl-1,2,4-triazolo[4,3- a ]pyridines: Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2. J Med Chem 2017;60:6704-20. [DOI: 10.1021/acs.jmedchem.7b00669] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
45 Fyfe TJ, Kellam B, Sykes DA, Capuano B, Scammells PJ, Lane JR, Charlton SJ, Mistry SN. Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor. J Med Chem 2019;62:9488-520. [PMID: 31580666 DOI: 10.1021/acs.jmedchem.9b00864] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Hoare SRJ, Pierre N, Moya AG, Larson B. Kinetic operational models of agonism for G-protein-coupled receptors. J Theor Biol 2018;446:168-204. [PMID: 29486201 DOI: 10.1016/j.jtbi.2018.02.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
47 Fujiwara A, Tsukada M, Ikemoto H, Izuno T, Hattori S, Okumo T, Hisamitsu T, Sunagawa M. Regulatory Role of Orexin in the Antistress Effect of "Press Tack Needle" Acupuncture Treatment. Healthcare (Basel) 2021;9:503. [PMID: 33925438 DOI: 10.3390/healthcare9050503] [Reference Citation Analysis]