BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Watts AO, van Lipzig MM, Jaeger WC, Seeber RM, van Zwam M, Vinet J, van der Lee MM, Siderius M, Zaman GJ, Boddeke HW, Smit MJ, Pfleger KD, Leurs R, Vischer HF. Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes. Br J Pharmacol 2013;168:1662-74. [PMID: 23170857 DOI: 10.1111/bph.12064] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Billottet C, Quemener C, Bikfalvi A. CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta 2013;1836:287-95. [PMID: 23994549 DOI: 10.1016/j.bbcan.2013.08.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 68] [Article Influence: 3.1] [Reference Citation Analysis]
2 Puchert M, Obst J, Koch C, Zieger K, Engele J. CXCL11 promotes tumor progression by the biased use of the chemokine receptors CXCR3 and CXCR7. Cytokine 2020;125:154809. [PMID: 31437604 DOI: 10.1016/j.cyto.2019.154809] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
3 Ayoub MA. Resonance Energy Transfer-Based Approaches to Study GPCRs. Methods Cell Biol 2016;132:255-92. [PMID: 26928548 DOI: 10.1016/bs.mcb.2015.10.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
4 Jin J, Zhang Z, Wang H, Zhan Y, Li G, Yang H, Fei Z, Xu Y, Li W. CXCR3 expression in colorectal cancer cells enhanced invasion through preventing CXCR4 internalization. Experimental Cell Research 2018;371:162-74. [DOI: 10.1016/j.yexcr.2018.08.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
5 Frank T, Reichel A, Larsen O, Stilp AC, Rosenkilde MM, Stamminger T, Ozawa T, Tschammer N. Attenuation of chemokine receptor function and surface expression as an immunomodulatory strategy employed by human cytomegalovirus is linked to vGPCR US28. Cell Commun Signal 2016;14:31. [PMID: 27955674 DOI: 10.1186/s12964-016-0154-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
6 Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY, Gaponenko V, Majetschak M. New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci 2016;17:E971. [PMID: 27331810 DOI: 10.3390/ijms17060971] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
7 Gao X, Enten GA, DeSantis AJ, Volkman BF, Gaponenko V, Majetschak M. Characterization of heteromeric complexes between chemokine (C-X-C motif) receptor 4 and α1-adrenergic receptors utilizing intermolecular bioluminescence resonance energy transfer assays. Biochem Biophys Res Commun 2020;528:368-75. [PMID: 32085899 DOI: 10.1016/j.bbrc.2020.02.094] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Ayoub MA, Zhang Y, Kelly RS, See HB, Johnstone EK, McCall EA, Williams JH, Kelly DJ, Pfleger KD. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease. PLoS One 2015;10:e0119803. [PMID: 25807547 DOI: 10.1371/journal.pone.0119803] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
9 Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018;175:1419-38. [PMID: 29272550 DOI: 10.1111/bph.14132] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
10 Liao Y, Lu B, Ma Q, Wu G, Lai X, Zang J, Shi Y, Liu D, Han F, Zhou N. Human Neuropeptide S Receptor Is Activated via a Gαq Protein-biased Signaling Cascade by a Human Neuropeptide S Analog Lacking the C-terminal 10 Residues. J Biol Chem 2016;291:7505-16. [PMID: 26865629 DOI: 10.1074/jbc.M115.704122] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
11 D'Agostino G, García-Cuesta EM, Gomariz RP, Rodríguez-Frade JM, Mellado M. The multilayered complexity of the chemokine receptor system. Biochem Biophys Res Commun 2020;528:347-58. [PMID: 32145914 DOI: 10.1016/j.bbrc.2020.02.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Groom JR. Regulators of T-cell fate: Integration of cell migration, differentiation and function. Immunol Rev 2019;289:101-14. [PMID: 30977199 DOI: 10.1111/imr.12742] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
13 Wijtmans M, Scholten D, Mooij W, Smit MJ, de Esch IJP, de Graaf C, Leurs R. Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. In: Tschammer N, editor. Chemokines. Cham: Springer International Publishing; 2015. pp. 119-85. [DOI: 10.1007/7355_2014_75] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Albee LJ, LaPorte HM, Gao X, Eby JM, Cheng YH, Nevins AM, Volkman BF, Gaponenko V, Majetschak M. Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle. Open Biol 2018;8:170207. [PMID: 29386406 DOI: 10.1098/rsob.170207] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
15 Russo E, Santoni A, Bernardini G. Tumor inhibition or tumor promotion? The duplicity of CXCR3 in cancer. J Leukoc Biol 2020;108:673-85. [PMID: 32745326 DOI: 10.1002/JLB.5MR0320-205R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Chung KY. Structural Aspects of GPCR-G Protein Coupling. Toxicol Res 2013;29:149-55. [PMID: 24386514 DOI: 10.5487/TR.2013.29.3.149] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
17 Felce JH, MacRae A, Davis SJ. Constraints on GPCR Heterodimerization Revealed by the Type-4 Induced-Association BRET Assay. Biophys J 2019;116:31-41. [PMID: 30558888 DOI: 10.1016/j.bpj.2018.09.034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
18 Ganghammer S, Gutjahr J, Hutterer E, Krenn PW, Pucher S, Zelle-Rieser C, Jöhrer K, Wijtmans M, Leurs R, Smit MJ, Gattei V, Greil R, Hartmann TN. Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica 2016;101:e99-102. [PMID: 26589908 DOI: 10.3324/haematol.2015.133470] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
19 Johnstone EKM, Pfleger KDG. Profiling novel pharmacology of receptor complexes using Receptor-HIT. Biochem Soc Trans 2021;49:1555-65. [PMID: 34436548 DOI: 10.1042/BST20201110] [Reference Citation Analysis]
20 Vischer HF, Castro M, Pin JP. G Protein-Coupled Receptor Multimers: A Question Still Open Despite the Use of Novel Approaches. Mol Pharmacol 2015;88:561-71. [PMID: 26138074 DOI: 10.1124/mol.115.099440] [Cited by in Crossref: 50] [Cited by in F6Publishing: 35] [Article Influence: 7.1] [Reference Citation Analysis]
21 He S, Guo J, Fu Y, Spear M, Qin C, Fu S, Cui Z, Jin W, Xu X, Chen W, Shang H, Wu Y. Prestimulation of CD2 confers resistance to HIV-1 latent infection in blood resting CD4 T cells. iScience 2021;24:103305. [PMID: 34765923 DOI: 10.1016/j.isci.2021.103305] [Reference Citation Analysis]
22 Heuninck J, Perpiñá Viciano C, Işbilir A, Caspar B, Capoferri D, Briddon SJ, Durroux T, Hill SJ, Lohse MJ, Milligan G, Pin JP, Hoffmann C. Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Mol Pharmacol 2019;96:778-93. [PMID: 31092552 DOI: 10.1124/mol.118.115477] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
23 Gao X, Albee LJ, Volkman BF, Gaponenko V, Majetschak M. Asymmetrical ligand-induced cross-regulation of chemokine (C-X-C motif) receptor 4 by α1-adrenergic receptors at the heteromeric receptor complex. Sci Rep 2018;8:2730. [PMID: 29426850 DOI: 10.1038/s41598-018-21096-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
24 Gao X, Cheng YH, Enten GA, DeSantis AJ, Gaponenko V, Majetschak M. Regulation of the thrombin/protease-activated receptor 1 axis by chemokine (CXC motif) receptor 4. J Biol Chem 2020;295:14893-905. [PMID: 32839271 DOI: 10.1074/jbc.RA120.015355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
25 Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018;285:2944-71. [PMID: 29637711 DOI: 10.1111/febs.14466] [Cited by in Crossref: 228] [Cited by in F6Publishing: 217] [Article Influence: 57.0] [Reference Citation Analysis]
26 Ayoub MA, See HB, Seeber RM, Armstrong SP, Pfleger KD. Profiling epidermal growth factor receptor and heregulin receptor 3 heteromerization using receptor tyrosine kinase heteromer investigation technology. PLoS One 2013;8:e64672. [PMID: 23700486 DOI: 10.1371/journal.pone.0064672] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
27 Fearon DT. Explaining the Paucity of Intratumoral T Cells: A Construction Out of Known Entities. Cold Spring Harb Symp Quant Biol 2016;81:219-26. [PMID: 28389597 DOI: 10.1101/sqb.2016.81.030783] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
28 Perpiñá-Viciano C, Işbilir A, Zarca A, Caspar B, Kilpatrick LE, Hill SJ, Smit MJ, Lohse MJ, Hoffmann C. Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Mol Pharmacol 2020;98:72-87. [PMID: 32474443 DOI: 10.1124/mol.119.118448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 White CW, Caspar B, Vanyai HK, Pfleger KDG, Hill SJ. CRISPR-Mediated Protein Tagging with Nanoluciferase to Investigate Native Chemokine Receptor Function and Conformational Changes. Cell Chem Biol 2020;27:499-510.e7. [PMID: 32053779 DOI: 10.1016/j.chembiol.2020.01.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
30 Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016;114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 10.8] [Reference Citation Analysis]
31 Mcheik S, Van Eeckhout N, De Poorter C, Galés C, Parmentier M, Springael JY. Coexpression of CCR7 and CXCR4 During B Cell Development Controls CXCR4 Responsiveness and Bone Marrow Homing. Front Immunol 2019;10:2970. [PMID: 31921208 DOI: 10.3389/fimmu.2019.02970] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
32 Jaeger WC, Armstrong SP, Hill SJ, Pfleger KD. Biophysical Detection of Diversity and Bias in GPCR Function. Front Endocrinol (Lausanne) 2014;5:26. [PMID: 24634666 DOI: 10.3389/fendo.2014.00026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
33 Tomaipitinca L, Russo E, Bernardini G. NK cell surveillance of hematological malignancies. Therapeutic implications and regulation by chemokine receptors. Mol Aspects Med 2021;:100968. [PMID: 34045078 DOI: 10.1016/j.mam.2021.100968] [Reference Citation Analysis]
34 Martínez-Muñoz L, Villares R, Rodríguez-Fernández JL, Rodríguez-Frade JM, Mellado M. Remodeling our concept of chemokine receptor function: From monomers to oligomers. J Leukoc Biol 2018;104:323-31. [PMID: 29719064 DOI: 10.1002/JLB.2MR1217-503R] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
35 Bernardini G, Antonangeli F, Bonanni V, Santoni A. Dysregulation of Chemokine/Chemokine Receptor Axes and NK Cell Tissue Localization during Diseases. Front Immunol 2016;7:402. [PMID: 27766097 DOI: 10.3389/fimmu.2016.00402] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 7.5] [Reference Citation Analysis]
36 Giegold O, Ogrissek N, Radeke HH. Response to comment on "CXCL9 causes heterologous desensitization of CXCL12-mediated memory T lymphocyte activation". J Immunol 2013;191:525-6. [PMID: 23825386 DOI: 10.4049/jimmunol.1390037] [Reference Citation Analysis]
37 Letourneur D, Danlos F, Marabelle A. Chemokine biology on immune checkpoint–targeted therapies. European Journal of Cancer 2020;137:260-71. [DOI: 10.1016/j.ejca.2020.06.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
38 Albee LJ, Gao X, Majetschak M. Plasticity of seven-transmembrane-helix receptor heteromers in human vascular smooth muscle cells. PLoS One 2021;16:e0253821. [PMID: 34166476 DOI: 10.1371/journal.pone.0253821] [Reference Citation Analysis]
39 Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KD, Devi LA. G Protein-Coupled Receptor Heteromers. Annu Rev Pharmacol Toxicol 2016;56:403-25. [PMID: 26514203 DOI: 10.1146/annurev-pharmtox-011613-135952] [Cited by in Crossref: 168] [Cited by in F6Publishing: 140] [Article Influence: 24.0] [Reference Citation Analysis]
40 Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG. Investigation of Receptor Heteromers Using NanoBRET Ligand Binding. Int J Mol Sci 2021;22:1082. [PMID: 33499147 DOI: 10.3390/ijms22031082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Kilpatrick LE, Humphrys LJ, Holliday ND. A G protein-coupled receptor dimer imaging assay reveals selectively modified pharmacology of neuropeptide Y Y1/Y5 receptor heterodimers. Mol Pharmacol 2015;87:718-32. [PMID: 25637604 DOI: 10.1124/mol.114.095356] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
42 Le Duigou C, Savary E, Kullmann DM, Miles R. Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors. J Neurosci 2015;35:13542-54. [PMID: 26446209 DOI: 10.1523/JNEUROSCI.0956-15.2015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
43 Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M. Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Proc Natl Acad Sci U S A 2015;112:E1659-68. [PMID: 25775528 DOI: 10.1073/pnas.1417564112] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
44 Laboute T, Gandía J, Pellissier LP, Corde Y, Rebeillard F, Gallo M, Gauthier C, Léauté A, Diaz J, Poupon A, Kieffer BL, Le Merrer J, Becker JA. The orphan receptor GPR88 blunts the signaling of opioid receptors and multiple striatal GPCRs. Elife 2020;9:e50519. [PMID: 32003745 DOI: 10.7554/eLife.50519] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Manukyan G, Papajik T, Mikulkova Z, Urbanova R, Kraiczova VS, Savara J, Kudelka M, Turcsanyi P, Kriegova E. High CXCR3 on Leukemic Cells Distinguishes IgHV mut from IgHV unmut in Chronic Lymphocytic Leukemia: Evidence from CD5high and CD5low Clones. J Immunol Res 2020;2020:7084268. [PMID: 32802894 DOI: 10.1155/2020/7084268] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Billard MJ, Fitzhugh DJ, Parker JS, Brozowski JM, McGinnis MW, Timoshchenko RG, Serafin DS, Lininger R, Klauber-Demore N, Sahagian G, Truong YK, Sassano MF, Serody JS, Tarrant TK. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis. PLoS One 2016;11:e0152856. [PMID: 27049755 DOI: 10.1371/journal.pone.0152856] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
47 Duckworth BC, Qin RZ, Groom JR. Spatial determinates of effector and memory CD8+ T cell fates. Immunol Rev 2021. [PMID: 34882817 DOI: 10.1111/imr.13044] [Reference Citation Analysis]
48 Duc NM, Kim HR, Chung KY. Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol. 2015;763:214-222. [PMID: 25981300 DOI: 10.1016/j.ejphar.2015.05.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]