BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yáñez JM, Joshi R, Yoshida GM. Genomics to accelerate genetic improvement in tilapia. Anim Genet 2020;51:658-74. [PMID: 32761644 DOI: 10.1111/age.12989] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Kayansamruaj P, Dinh-Hung N, Srisapoome P, Na-Nakorn U, Chatchaiphan S. Genomics-driven prophylactic measures to increase streptococcosis resistance in tilapia. J Fish Dis 2023. [PMID: 36708284 DOI: 10.1111/jfd.13763] [Reference Citation Analysis]
2 Scholtens M, Dodds K, Walker S, Clarke S, Tate M, Slattery T, Preece M, Arratia L, Symonds J. Opportunities for improving feed efficiency and spinal health in New Zealand farmed Chinook salmon (Oncorhynchus tshawytscha) using genomic information. Aquaculture 2023;563:738936. [DOI: 10.1016/j.aquaculture.2022.738936] [Reference Citation Analysis]
3 Wang J, Zhao J, Tong B, Ke Q, Bai Y, Gong J, Zeng J, Deng Y, Lan B, Zhou T, Xu P. Effects of artificial mating on genomic selection of resistance against Cryptocaryon irritans in large yellow croaker. Aquaculture 2022;561:738617. [DOI: 10.1016/j.aquaculture.2022.738617] [Reference Citation Analysis]
4 Shoemaker CA, Lozano CA, Lafrentz BR, Mumma P, Vela-avitúa S, Ospina-arango JF, Yazdi MH, Rye M. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Francisella orientalis and its genetic (co)variation to both harvest weight and resistance to Streptococcus agalactiae Ib. Aquaculture 2022;561:738736. [DOI: 10.1016/j.aquaculture.2022.738736] [Reference Citation Analysis]
5 Yáñez JM, Barría A, López ME, Moen T, Garcia BF, Yoshida GM, Xu P. Genome‐wide association and genomic selection in aquaculture. Reviews in Aquaculture 2022. [DOI: 10.1111/raq.12750] [Reference Citation Analysis]
6 Houston RD, Kriaridou C, Robledo D. Animal board invited review: Widespread adoption of genetic technologies is key to sustainable expansion of global aquaculture. animal 2022;16:100642. [DOI: 10.1016/j.animal.2022.100642] [Reference Citation Analysis]
7 Geletu TT, Zhao J. Genetic resources of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in its native range and aquaculture. Hydrobiologia. [DOI: 10.1007/s10750-022-04989-4] [Reference Citation Analysis]
8 Ferrari C, Tovela E, Taviani E, Nonnis Marzano F. DNA barcoding to assess species identification in museum samples of Amphiliidae and natural samples of Cichlidae from Southern Mozambique. Rend Fis Acc Lincei 2022. [DOI: 10.1007/s12210-022-01098-1] [Reference Citation Analysis]
9 Tao W, Zhu X, Cao J, Xiao H, Dong J, Kocher TD, Lu M, Wang D. Screening and characterization of sex-linked DNA markers in Mozambique tilapia (Oreochromis mossambicus). Aquaculture 2022;557:738331. [DOI: 10.1016/j.aquaculture.2022.738331] [Reference Citation Analysis]
10 Delphino M, Joshi R, Alvarez AT. Economic appraisal of using genetics to control Streptococcus agalactiae in Nile tilapia under cage and pond farming system in Malaysia. Sci Rep 2022;12:8754. [PMID: 35610248 DOI: 10.1038/s41598-022-12649-9] [Reference Citation Analysis]
11 Garcia BF, Yoshida GM, Carvalheiro R, Yáñez JM. Accuracy of genotype imputation to whole genome sequencing level using different populations of Nile tilapia. Aquaculture 2022;551:737947. [DOI: 10.1016/j.aquaculture.2022.737947] [Reference Citation Analysis]
12 Gui J, Zhou L, Li X. Rethinking fish biology and biotechnologies in the challenge era for burgeoning genome resources and strengthening food security. Water Biology and Security 2022;1:100002. [DOI: 10.1016/j.watbs.2021.11.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
13 Chu PY, Li JX, Hsu TH, Gong HY, Lin CY, Wang JH, Huang CW. Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia (Oreochromis spp.) via Transcriptome Analysis. Animals (Basel) 2021;11:3538. [PMID: 34944312 DOI: 10.3390/ani11123538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Barría A, Benzie JAH, Houston RD, De Koning DJ, de Verdal H. Genomic Selection and Genome-wide Association Study for Feed-Efficiency Traits in a Farmed Nile Tilapia (Oreochromis niloticus) Population. Front Genet 2021;12:737906. [PMID: 34616434 DOI: 10.3389/fgene.2021.737906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
15 Abwao J, Jung’a J, Barasa JE, Kyule D, Opiyo M, Awuor JF, Ogello E, Munguti JM, Keya GA. Selective breeding of Nile tilapia, Oreochromis niloticus : A strategy for increased genetic diversity and sustainable development of aquaculture in Kenya. Journal of Applied Aquaculture. [DOI: 10.1080/10454438.2021.1958728] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Palaiokostas C. Predicting for disease resistance in aquaculture species using machine learning models. Aquaculture Reports 2021;20:100660. [DOI: 10.1016/j.aqrep.2021.100660] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Joshi R, Almeida DB, da Costa AR, Skaarud A, de Pádua Pereira U, Knutsen TM, Moen T, Alvarez AT. Genomic selection for resistance to Francisellosis in commercial Nile tilapia population: Genetic and genomic parameters, correlation with growth rate and predictive ability. Aquaculture 2021;537:736515. [DOI: 10.1016/j.aquaculture.2021.736515] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
18 Joshi R, Skaarud A, Alvarez AT, Moen T, Ødegård J. Bayesian genomic models boost prediction accuracy for survival to Streptococcus agalactiae infection in Nile tilapia (Oreochromus nilioticus). Genet Sel Evol 2021;53:37. [PMID: 33882834 DOI: 10.1186/s12711-021-00629-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Tu PY, Huang SJ, Rajanbabu V, Wu JL, Chen JY. Comparative transcriptome analysis reveals ectopic delta-5 and delta-6 desaturases enhance protective gene expression upon Vibrio vulnificus challenge in Tilapia (Oreochromis niloticus). BMC Genomics 2021;22:200. [PMID: 33752587 DOI: 10.1186/s12864-021-07521-5] [Reference Citation Analysis]
20 Yoshida GM, Yáñez JM. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genomics 2021;22:57. [PMID: 33451291 DOI: 10.1186/s12864-020-07341-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
21 Hsu TH, Chiu YT, Lee HT, Gong HY, Huang CW. Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper (Epinephelus tukula). Biology (Basel) 2021;10:36. [PMID: 33430356 DOI: 10.3390/biology10010036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]