BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gentile TA, Simmons SJ, Barker DJ, Shaw JK, España RA, Muschamp JW. Suvorexant, an orexin/hypocretin receptor antagonist, attenuates motivational and hedonic properties of cocaine. Addict Biol 2018;23:247-55. [PMID: 28419646 DOI: 10.1111/adb.12507] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 9.8] [Reference Citation Analysis]
Number Citing Articles
1 Campbell EJ, Marchant NJ, Lawrence AJ. A sleeping giant: Suvorexant for the treatment of alcohol use disorder? Brain Res 2020;1731:145902. [PMID: 30081035 DOI: 10.1016/j.brainres.2018.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
2 Esmaili-Shahzade-Ali-Akbari P, Hosseinzadeh H, Mehri S. Effect of suvorexant on morphine tolerance and dependence in mice: Role of NMDA, AMPA, ERK and CREB proteins. Neurotoxicology 2021;84:64-72. [PMID: 33609567 DOI: 10.1016/j.neuro.2021.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021;206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021;12:1195. [PMID: 34440369 DOI: 10.3390/genes12081195] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021;12:1263. [PMID: 34440437 DOI: 10.3390/genes12081263] [Reference Citation Analysis]
6 James MH, Bowrey HE, Stopper CM, Aston-Jones G. Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats. Eur J Neurosci 2019;50:2602-12. [PMID: 30240516 DOI: 10.1111/ejn.14166] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
7 Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020;36:432-48. [PMID: 31782044 DOI: 10.1007/s12264-019-00447-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
8 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
9 Bjorness TE, Greene RW. Sleep Deprivation Enhances Cocaine Conditioned Place Preference in an Orexin Receptor-Modulated Manner. eNeuro 2020;7:ENEURO. [PMID: 33139319 DOI: 10.1523/ENEURO.0283-20.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res 2020;1731:146164. [PMID: 30796894 DOI: 10.1016/j.brainres.2019.02.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
11 Geste JR, Pompilus M, Febo M, Bruijnzeel AW. Self-administration of the synthetic cathinone MDPV enhances reward function via a nicotinic receptor dependent mechanism. Neuropharmacology 2018;137:286-96. [PMID: 29778945 DOI: 10.1016/j.neuropharm.2018.05.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
12 Cannella LA, McGary H, Ramirez SH. Brain interrupted: Early life traumatic brain injury and addiction vulnerability. Exp Neurol 2019;317:191-201. [PMID: 30862466 DOI: 10.1016/j.expneurol.2019.03.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
13 Berro LF, Moreira-Junior EDC, Rowlett JK. The dual orexin receptor antagonist almorexant blocks the sleep-disrupting and daytime stimulant effects of methamphetamine in rhesus monkeys. Drug Alcohol Depend 2021;227:108930. [PMID: 34358767 DOI: 10.1016/j.drugalcdep.2021.108930] [Reference Citation Analysis]
14 Brodnik ZD, Alonso IP, Xu W, Zhang Y, Kortagere S, España RA. Hypocretin receptor 1 involvement in cocaine-associated behavior: Therapeutic potential and novel mechanistic insights. Brain Res 2020;1731:145894. [PMID: 30071195 DOI: 10.1016/j.brainres.2018.07.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
15 Matzeu A, Martin-Fardon R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020;10:E226. [PMID: 32290110 DOI: 10.3390/brainsci10040226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
16 Simmons SJ, Martorana R, Philogene-Khalid H, Tran FH, Gentile TA, Xu X, Su S, Rawls SM, Muschamp JW. Role of hypocretin/orexin receptor blockade on drug-taking and ultrasonic vocalizations (USVs) associated with low-effort self-administration of cathinone-derived 3,4-methylenedioxypyrovalerone (MDPV) in rats. Psychopharmacology (Berl) 2017;234:3207-15. [PMID: 28786030 DOI: 10.1007/s00213-017-4709-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
17 Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020;45:141-65. [PMID: 31234199 DOI: 10.1038/s41386-019-0446-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
18 Gentile TA, Simmons SJ, Watson MN, Connelly KL, Brailoiu E, Zhang Y, Muschamp JW. Effects of Suvorexant, a Dual Orexin/Hypocretin Receptor Antagonist, on Impulsive Behavior Associated with Cocaine. Neuropsychopharmacology 2018;43:1001-9. [PMID: 28741623 DOI: 10.1038/npp.2017.158] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
19 D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019;10:509. [PMID: 31396113 DOI: 10.3389/fpsyt.2019.00509] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
20 Saad L, Sartori M, Pol Bodetto S, Romieu P, Kalsbeek A, Zwiller J, Anglard P. Regulation of Brain DNA Methylation Factors and of the Orexinergic System by Cocaine and Food Self-Administration. Mol Neurobiol 2019;56:5315-31. [DOI: 10.1007/s12035-018-1453-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
21 Perrey DA, Zhang Y. Therapeutics development for addiction: Orexin-1 receptor antagonists. Brain Res 2020;1731:145922. [PMID: 30148984 DOI: 10.1016/j.brainres.2018.08.025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
22 Lynch WJ, Bakhti-Suroosh A, Abel JM, Davis C. Shifts in the neurobiological mechanisms motivating cocaine use with the development of an addiction-like phenotype in male rats. Psychopharmacology (Berl) 2021;238:811-23. [PMID: 33241478 DOI: 10.1007/s00213-020-05732-4] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Khosrowabadi E, Karimi-haghighi S, Jamali S, Haghparast A. Differential Roles of Intra-accumbal Orexin Receptors in Acquisition and Expression of Methamphetamine-Induced Conditioned Place Preference in the Rats. Neurochem Res 2020;45:2230-41. [DOI: 10.1007/s11064-020-03084-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Research 2020;1731:146028. [DOI: 10.1016/j.brainres.2018.11.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
25 Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Front Neurol Neurosci 2021;45:117-27. [PMID: 34052815 DOI: 10.1159/000514965] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Simmons SJ, Leyrer-Jackson JM, Oliver CF, Hicks C, Muschamp JW, Rawls SM, Olive MF. DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants. ACS Chem Neurosci 2018;9:2379-94. [PMID: 29714473 DOI: 10.1021/acschemneuro.8b00147] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
27 Ufer M, Kelsh D, Schoedel KA, Dingemanse J. Abuse potential assessment of the new dual orexin receptor antagonist daridorexant in recreational sedative drug users as compared to suvorexant and zolpidem. Sleep 2021:zsab224. [PMID: 34480579 DOI: 10.1093/sleep/zsab224] [Reference Citation Analysis]
28 Feng FF, Li JK, Liu XY, Zhang FG, Cheung CW, Ma JA. General Synthesis of Tri-Carbo-Substituted N2-Aryl-1,2,3-triazoles via Cu-Catalyzed Annulation of Azirines with Aryldiazonium Salts. J Org Chem 2020;85:10872-83. [PMID: 32691600 DOI: 10.1021/acs.joc.0c01433] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
29 Simmons SJ, Kim E, Gentile TA, Murad A, Muschamp JW, Rawls SM. Behavioral Profiles and Underlying Transmitters/Circuits of Cathinone-Derived Psychostimulant Drugs of Abuse. In: Zawilska JB, editor. Synthetic Cathinones. Cham: Springer International Publishing; 2018. pp. 125-52. [DOI: 10.1007/978-3-319-78707-7_8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Suchting R, Yoon JH, Miguel GGS, Green CE, Weaver MF, Vincent JN, Fries GR, Schmitz JM, Lane SD. Preliminary examination of the orexin system on relapse-related factors in cocaine use disorder. Brain Res 2020;1731:146359. [PMID: 31374218 DOI: 10.1016/j.brainres.2019.146359] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
31 Steiner N, Rossetti C, Sakurai T, Yanagisawa M, de Lecea L, Magistretti PJ, Halfon O, Boutrel B. Hypocretin/orexin deficiency decreases cocaine abuse liability. Neuropharmacology 2018;133:395-403. [PMID: 29454841 DOI: 10.1016/j.neuropharm.2018.02.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
32 Foltin RW, Evans SM. Hypocretin/orexin antagonists decrease cocaine self-administration by female rhesus monkeys. Drug Alcohol Depend 2018;188:318-27. [PMID: 29852449 DOI: 10.1016/j.drugalcdep.2018.04.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
33 Flanigan ME, Aleyasin H, Li L, Burnett CJ, Chan KL, LeClair KB, Lucas EK, Matikainen-Ankney B, Durand-de Cuttoli R, Takahashi A, Menard C, Pfau ML, Golden SA, Bouchard S, Calipari ES, Nestler EJ, DiLeone RJ, Yamanaka A, Huntley GW, Clem RL, Russo SJ. Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nat Neurosci 2020;23:638-50. [PMID: 32284606 DOI: 10.1038/s41593-020-0617-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
34 Jouda J, Wöhr M, Del Rey A. Immunity and ultrasonic vocalization in rodents. Ann N Y Acad Sci 2019;1437:68-82. [PMID: 30062701 DOI: 10.1111/nyas.13931] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
35 [DOI: 10.1101/2020.04.25.061887] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep. [DOI: 10.1007/s40473-022-00246-z] [Reference Citation Analysis]