BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boyle MJW, Bishop TR, Luke SH, Breugel M, Evans TA, Pfeifer M, Fayle TM, Hardwick SR, Lane‐shaw RI, Yusah KM, Ashford ICR, Ashford OS, Garnett E, Turner EC, Wilkinson CL, Chung AYC, Ewers RM, Allen D. Localised climate change defines ant communities in human‐modified tropical landscapes. Funct Ecol 2021;35:1094-108. [DOI: 10.1111/1365-2435.13737] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Tigreros N, Kozhoridze G, Davidowitz G, Ziv Y. Influence of the direct and indirect effects of habitat fragmentation, via microclimate change, on animal locomotion. Landsc Ecol 2023. [DOI: 10.1007/s10980-022-01588-5] [Reference Citation Analysis]
2 Luo XY, Newman C, Luo Y, Zhou ZM. Comparing Ant Assemblages and Functional Groups across Urban Habitats and Seasons in an East Asia Monsoon Climate Area. Animals (Basel) 2022;13. [PMID: 36611650 DOI: 10.3390/ani13010040] [Reference Citation Analysis]
3 Marsh CJ, Turner EC, Blonder B, Bongalov B, Both S, Cruz RS, Elias DMO, Hemprich-bennett D, Jotan P, Kemp V, Kritzler UH, Milne S, Milodowski DT, Mitchell SL, Pillco MM, Nunes MH, Riutta T, Robinson SJB, Slade EM, Bernard H, Burslem DFRP, Chung AYC, Clare EL, Coomes DA, Davies ZG, Edwards DP, Johnson D, Kratina P, Malhi Y, Majalap N, Nilus R, Ostle NJ, Rossiter SJ, Struebig MJ, Williams M, Ewers RM, Lewis OT, Reynolds G, Teh YA, Hector A. Logging alters tropical forest structure, while conversion reduces biodiversity and functioning.. [DOI: 10.1101/2022.12.15.520573] [Reference Citation Analysis]
4 Wenda C, Gaitán‐espitia JD, Solano‐iguaran JJ, Nakamura A, Majcher BM, Ashton LA. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecology Letters 2022. [DOI: 10.1111/ele.14150] [Reference Citation Analysis]
5 Victor H. Gonzalez, Kennan Oyen, Marlene L. Aguilar, Andres Herrera, Ruben D. Martin, Rodulfo Ospina. High thermal tolerance in high‐elevation species and laboratory‐reared colonies of tropical bumble bees. Ecol Evol 2022;12:e9560. [PMID: 36479027 DOI: 10.1002/ece3.9560] [Reference Citation Analysis]
6 Gonzalez VH, Oyen K, Ávila O, Ospina R. Thermal limits of Africanized honey bees are influenced by temperature ramping rate but not by other experimental conditions. Journal of Thermal Biology 2022;110:103369. [DOI: 10.1016/j.jtherbio.2022.103369] [Reference Citation Analysis]
7 Dáttilo W, Corro EJ, Ahuatzin DA, Regolin AL, López-acosta JC, Ribeiro MC. Scale of effect matters: Forest cover influences on tropical ant-plant ecological networks. Food Webs 2022;33:e00256. [DOI: 10.1016/j.fooweb.2022.e00256] [Reference Citation Analysis]
8 Chown SL. Macrophysiology for decision‐making. Journal of Zoology 2022. [DOI: 10.1111/jzo.13029] [Reference Citation Analysis]
9 Ghizoni Santos E, Henrique Nunes M, Jackson T, Eiji Maeda E. Quantifying tropical forest disturbances using canopy structural traits derived from terrestrial laser scanning. Forest Ecology and Management 2022;524:120546. [DOI: 10.1016/j.foreco.2022.120546] [Reference Citation Analysis]
10 Turriago JL, Tejedo M, Hoyos JM, Bernal MH. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. J Exp Zool Pt A 2022;337:746-759. [DOI: 10.1002/jez.2632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Martin AK, Sheridan JA. Body size responses to the combined effects of climate and land use changes within an urban framework. Glob Chang Biol 2022. [PMID: 35758068 DOI: 10.1111/gcb.16292] [Reference Citation Analysis]
12 Lindenmayer D, Blanchard W, Mcburney L, Bowd E, Youngentob K, Marsh K, Taylor C. Stand age related differences in forest microclimate. Forest Ecology and Management 2022;510:120101. [DOI: 10.1016/j.foreco.2022.120101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Parr CL, Bishop TR. The response of ants to climate change. Glob Chang Biol 2022. [PMID: 35274797 DOI: 10.1111/gcb.16140] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
14 Bujan J, Yanoviak SP. Behavioral response to heat stress of twig-nesting canopy ants. Oecologia. [DOI: 10.1007/s00442-022-05143-6] [Reference Citation Analysis]
15 Nascimento G, Câmara T, Arnan X. Critical thermal limits in ants and their implications under climate change. Biol Rev Camb Philos Soc 2022. [PMID: 35174946 DOI: 10.1111/brv.12843] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Chapman LJ, Nyboer EA, Fugère V. Fish response to environmental stressors in the Lake Victoria Basin ecoregion. Fish Physiology 2022. [DOI: 10.1016/bs.fp.2022.04.010] [Reference Citation Analysis]
17 Lach L. Invasive ant establishment, spread, and management with changing climate. Curr Opin Insect Sci 2021;47:119-24. [PMID: 34252591 DOI: 10.1016/j.cois.2021.06.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Roeder KA, Bujan J, Beurs KM, Weiser MD, Kaspari M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere 2021;12. [DOI: 10.1002/ecs2.3645] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]