BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schwaller B. Cytosolic Ca2+ Buffers Are Inherently Ca2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020;12:a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen Z, Long H, Guo J, Wang Y, He K, Tao C, Li X, Jiang K, Guo S, Pi Y. Autism-Risk Gene necab2 Regulates Psychomotor and Social Behavior as a Neuronal Modulator of mGluR1 Signaling. Front Mol Neurosci 2022;15:901682. [DOI: 10.3389/fnmol.2022.901682] [Reference Citation Analysis]
2 Callens M, Loncke J, Bultynck G. Dysregulated Ca2+ Homeostasis as a Central Theme in Neurodegeneration: Lessons from Alzheimer's Disease and Wolfram Syndrome. Cells 2022;11:1963. [PMID: 35741091 DOI: 10.3390/cells11121963] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Cheng K, Huang C, Hsieh T, Chiang H. Disrupted cellular calcium homeostasis is responsible for Aβ‐induced learning and memory damage and lifespan shortening in a model of Aβ transgenic fly. IUBMB Life. [DOI: 10.1002/iub.2621] [Reference Citation Analysis]
4 Permyakov EA, Uversky VN. What Is Parvalbumin for? Biomolecules 2022;12:656. [DOI: 10.3390/biom12050656] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Loncke J, Vervliet T, Parys JB, Kaasik A, Bultynck G. Uniting the divergent Wolfram syndrome-linked proteins WFS1 and CISD2 as modulators of Ca2+ signaling. Sci Signal 2021;14:eabc6165. [PMID: 34582248 DOI: 10.1126/scisignal.abc6165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Bazwinsky-Wutschke I, Dehghani F. Impact of cochlear ablation on calbindin and synaptophysin in the gerbil medial nucleus of the trapezoid body before hearing onset. J Chem Neuroanat 2021;118:102023. [PMID: 34481914 DOI: 10.1016/j.jchemneu.2021.102023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Bucher EA, Collins JM, King AE, Vickers JC, Kirkcaldie MTK. Coherence and cognition in the cortex: the fundamental role of parvalbumin, myelin, and the perineuronal net. Brain Struct Funct 2021;226:2041-55. [PMID: 34175994 DOI: 10.1007/s00429-021-02327-3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Fleming W, Jewell S, Engelhard B, Witten DM, Witten IB. Inferring spikes from calcium imaging in dopamine neurons. PLoS One 2021;16:e0252345. [PMID: 34086726 DOI: 10.1371/journal.pone.0252345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chen Y, Matveev V. Stationary Ca2+ nanodomains in the presence of buffers with two binding sites. Biophys J 2021;120:1942-56. [PMID: 33771472 DOI: 10.1016/j.bpj.2021.03.015] [Reference Citation Analysis]
10 Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021;12:581645. [PMID: 33776759 DOI: 10.3389/fphar.2021.581645] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
11 Bjerke IE, Yates SC, Laja A, Witter MP, Puchades MA, Bjaalie JG, Leergaard TB. Densities and numbers of calbindin and parvalbumin positive neurons across the rat and mouse brain. iScience 2021;24:101906. [PMID: 33385111 DOI: 10.1016/j.isci.2020.101906] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
12 Kletetschka G, Bazala R, Takáč M, Svecova E. Magnetic domains oscillation in the brain with neurodegenerative disease. Sci Rep 2021;11:714. [PMID: 33436793 DOI: 10.1038/s41598-020-80212-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020;14:577525. [PMID: 33390904 DOI: 10.3389/fncel.2020.577525] [Cited by in Crossref: 4] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
14 Miczán V, Kelemen K, Glavinics JR, László ZI, Barti B, Kenesei K, Kisfali M, Katona I. NECAB1 and NECAB2 are Prevalent Calcium-Binding Proteins of CB1/CCK-Positive GABAergic Interneurons. Cereb Cortex 2021;31:1786-806. [PMID: 33230531 DOI: 10.1093/cercor/bhaa326] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Janickova L, Schwaller B. Parvalbumin-Deficiency Accelerates the Age-Dependent ROS Production in Pvalb Neurons in vivo: Link to Neurodevelopmental Disorders. Front Cell Neurosci 2020;14:571216. [PMID: 33132847 DOI: 10.3389/fncel.2020.571216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 Marchi S, Giorgi C, Galluzzi L, Pinton P. Ca2+ Fluxes and Cancer. Mol Cell 2020;78:1055-69. [PMID: 32559424 DOI: 10.1016/j.molcel.2020.04.017] [Cited by in Crossref: 35] [Cited by in F6Publishing: 57] [Article Influence: 17.5] [Reference Citation Analysis]
17 Janickova L, Rechberger KF, Wey L, Schwaller B. Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes. Mol Autism 2020;11:47. [PMID: 32517751 DOI: 10.1186/s13229-020-00323-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
18 Filice F, Schwaller B, Michel TM, Grünblatt E. Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD). Mol Autism 2020;11:10. [PMID: 32000856 DOI: 10.1186/s13229-020-0314-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
19 Bootman MD, Bultynck G. Fundamentals of Cellular Calcium Signaling: A Primer. Cold Spring Harb Perspect Biol 2020;12:a038802. [PMID: 31427372 DOI: 10.1101/cshperspect.a038802] [Cited by in Crossref: 31] [Cited by in F6Publishing: 47] [Article Influence: 15.5] [Reference Citation Analysis]
20 Pierro C, Sneyers F, Bultynck G, Roderick HL. ER Ca2+ release and store-operated Ca2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019;82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]