1 |
Chen J, Xu H, Tao W, Chen Z, Zhao Y, Han JJ. Transformer for one stop interpretable cell type annotation. Nat Commun 2023;14:223. [PMID: 36641532 DOI: 10.1038/s41467-023-35923-4] [Reference Citation Analysis]
|
2 |
Brombacher E, Hackenberg M, Kreutz C, Binder H, Treppner M. The performance of deep generative models for learning joint embeddings of single-cell multi-omics data. Front Mol Biosci 2022;9. [DOI: 10.3389/fmolb.2022.962644] [Reference Citation Analysis]
|
3 |
Brombacher E, Hackenberg M, Kreutz C, Binder H, Treppner M. The performance of deep generative models for learning joint embeddings of single-cell multi-omics data.. [DOI: 10.1101/2022.06.06.494951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Heydari AA, Davalos OA, Hoyer KK, Sindi SS. N-ACT: An Interpretable Deep Learning Model for Automatic Cell Type and Salient Gene Identification.. [DOI: 10.1101/2022.05.12.491682] [Reference Citation Analysis]
|
5 |
Allen C, Chang Y, Ma Q, Chung D. MAPLE: A Hybrid Framework for Multi-Sample Spatial Transcriptomics Data.. [DOI: 10.1101/2022.02.28.482296] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
6 |
Heydari AA, Sindi SS. Deep Learning in Spatial Transcriptomics: Learning From the Next Next-Generation Sequencing.. [DOI: 10.1101/2022.02.28.482392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|