BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shlapobersky M, Marshak JO, Dong L, Huang ML, Wei Q, Chu A, Rolland A, Sullivan S, Koelle DM. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol 2012;93:1305-15. [PMID: 22398318 DOI: 10.1099/vir.0.040055-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Luo K, Zhang H, Zavala F, Biragyn A, Espinosa DA, Markham RB. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities. PLoS One 2014;9:e90413. [PMID: 24599116 DOI: 10.1371/journal.pone.0090413] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
2 Çuburu N, Wang K, Goodman KN, Pang YY, Thompson CD, Lowy DR, Cohen JI, Schiller JT. Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge. J Virol 2015;89:83-96. [PMID: 25320297 DOI: 10.1128/JVI.02380-14] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
3 Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019;37:7363-71. [PMID: 28958807 DOI: 10.1016/j.vaccine.2017.09.044] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
4 Halford WP. Antigenic breadth: a missing ingredient in HSV-2 subunit vaccines? Expert Rev Vaccines 2014;13:691-710. [PMID: 24837838 DOI: 10.1586/14760584.2014.910121] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
5 McAllister SC, Schleiss MR. Prospects and perspectives for development of a vaccine against herpes simplex virus infections. Expert Rev Vaccines 2014;13:1349-60. [PMID: 25077372 DOI: 10.1586/14760584.2014.932694] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
6 Zhu XP, Muhammad ZS, Wang JG, Lin W, Guo SK, Zhang W. HSV-2 vaccine: current status and insight into factors for developing an efficient vaccine. Viruses 2014;6:371-90. [PMID: 24469503 DOI: 10.3390/v6020371] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
7 Johnston C, Magaret A, Roychoudhury P, Greninger AL, Cheng A, Diem K, Fitzgibbon MP, Huang ML, Selke S, Lingappa JR, Celum C, Jerome KR, Wald A, Koelle DM. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 UL and US regions from genital swabs collected from 3 continents. Virology 2017;510:90-8. [PMID: 28711653 DOI: 10.1016/j.virol.2017.06.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
8 Marć MA, Domínguez-Álvarez E, Gamazo C. Nucleic acid vaccination strategies against infectious diseases. Expert Opin Drug Deliv 2015;12:1851-65. [PMID: 26365499 DOI: 10.1517/17425247.2015.1077559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
9 Marshak JO, Dong L, Koelle DM. The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines. Methods Mol Biol 2020;2060:429-54. [PMID: 31617196 DOI: 10.1007/978-1-4939-9814-2_27] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Marshak JO, Dong L, Koelle DM. The murine intravaginal HSV-2 challenge model for investigation of DNA vaccines. Methods Mol Biol 2014;1144:305-27. [PMID: 24671693 DOI: 10.1007/978-1-4939-0428-0_21] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
11 Ayoub HH, Chemaitelly H, Abu-Raddad LJ. Epidemiological Impact of Novel Preventive and Therapeutic HSV-2 Vaccination in the United States: Mathematical Modeling Analyses. Vaccines (Basel) 2020;8:E366. [PMID: 32650385 DOI: 10.3390/vaccines8030366] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Dutton JL, Li B, Woo WP, Marshak JO, Xu Y, Huang ML, Dong L, Frazer IH, Koelle DM. A novel DNA vaccine technology conveying protection against a lethal herpes simplex viral challenge in mice. PLoS One 2013;8:e76407. [PMID: 24098493 DOI: 10.1371/journal.pone.0076407] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
13 Joyce JD, Patel AK, Murphy B, Carr DJJ, Gershburg E, Bertke AS. Assessment of Two Novel Live-Attenuated Vaccine Candidates for Herpes Simplex Virus 2 (HSV-2) in Guinea Pigs. Vaccines (Basel) 2021;9:258. [PMID: 33805768 DOI: 10.3390/vaccines9030258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Odegard JM, Flynn PA, Campbell DJ, Robbins SH, Dong L, Wang K, Ter Meulen J, Cohen JI, Koelle DM. A novel HSV-2 subunit vaccine induces GLA-dependent CD4 and CD8 T cell responses and protective immunity in mice and guinea pigs. Vaccine 2016;34:101-9. [PMID: 26571309 DOI: 10.1016/j.vaccine.2015.10.137] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
15 Halford WP, Geltz J, Messer RJ, Hasenkrug KJ. Antibodies Are Required for Complete Vaccine-Induced Protection against Herpes Simplex Virus 2. PLoS One 2015;10:e0145228. [PMID: 26670699 DOI: 10.1371/journal.pone.0145228] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
16 Krishnan R, Stuart PM. Developments in Vaccination for Herpes Simplex Virus. Front Microbiol 2021;12:798927. [PMID: 34950127 DOI: 10.3389/fmicb.2021.798927] [Reference Citation Analysis]
17 Nardo D, Henson D, Springer JE, Venditto VJ. Modulating the immune response with liposomal delivery. Nanomaterials for Clinical Applications. Elsevier; 2020. pp. 159-211. [DOI: 10.1016/b978-0-12-816705-2.00006-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Ike AC, Onu CJ, Ononugbo CM, Reward EE, Muo SO. Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020;8:E302. [PMID: 32545507 DOI: 10.3390/vaccines8020302] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
19 Coleman JL, Shukla D. Recent advances in vaccine development for herpes simplex virus types I and II. Hum Vaccin Immunother 2013;9:729-35. [PMID: 23442925 DOI: 10.4161/hv.23289] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
20 Wijesinghe VN, Farouk IA, Zabidi NZ, Puniyamurti A, Choo WS, Lal SK. Current vaccine approaches and emerging strategies against herpes simplex virus (HSV). Expert Rev Vaccines 2021;:1-20. [PMID: 34296960 DOI: 10.1080/14760584.2021.1960162] [Reference Citation Analysis]
21 Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020;13:1001-46. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Awasthi S, Huang J, Shaw C, Friedman HM. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes. J Virol 2014;88:8421-32. [PMID: 24829358 DOI: 10.1128/JVI.01130-14] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
23 Gottlieb SL, Giersing BK, Hickling J, Jones R, Deal C, Kaslow DC; HSV Vaccine Expert Consultation Group. Meeting report: Initial World Health Organization consultation on herpes simplex virus (HSV) vaccine preferred product characteristics, March 2017. Vaccine 2019;37:7408-18. [PMID: 29224963 DOI: 10.1016/j.vaccine.2017.10.084] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
24 Veselenak RL, Shlapobersky M, Pyles RB, Wei Q, Sullivan SM, Bourne N. A Vaxfectin(®)-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine 2012;30:7046-51. [PMID: 23041125 DOI: 10.1016/j.vaccine.2012.09.057] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
25 Lin WH, Vilalta A, Adams RJ, Rolland A, Sullivan SM, Griffin DE. Vaxfectin adjuvant improves antibody responses of juvenile rhesus macaques to a DNA vaccine encoding the measles virus hemagglutinin and fusion proteins. J Virol 2013;87:6560-8. [PMID: 23552419 DOI: 10.1128/JVI.00635-13] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
26 Halford WP, Geltz J, Gershburg E. Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2. PLoS One 2013;8:e65523. [PMID: 23755244 DOI: 10.1371/journal.pone.0065523] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]