BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nieder A, Mooney R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos Trans R Soc Lond B Biol Sci 2020;375:20190054. [PMID: 31735150 DOI: 10.1098/rstb.2019.0054] [Cited by in Crossref: 27] [Cited by in F6Publishing: 36] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Bouchet H, Lemasson A, Collier K, Marker L, Schmidt‐küntzel A, Johnston B, Hausberger M. Early life experience and sex influence acoustic repertoire use in wild‐born, but hand‐reared, captive cheetahs ( Acinonyx jubatus ). Developmental Psychobiology 2022;64. [DOI: 10.1002/dev.22309] [Reference Citation Analysis]
2 Mercado E 3rd, Ashour M, McAllister S. Cognitive control of song production by humpback whales. Anim Cogn 2022. [PMID: 36058997 DOI: 10.1007/s10071-022-01675-9] [Reference Citation Analysis]
3 Wyman MT, Walkenhorst B, Manser MB. Selection levels on vocal individuality: strategic use or byproduct. Current Opinion in Behavioral Sciences 2022;46:101140. [DOI: 10.1016/j.cobeha.2022.101140] [Reference Citation Analysis]
4 Karigo T. Gaining insights into the internal states of the rodent brain through vocal communications. Neurosci Res 2022:S0168-0102(22)00211-5. [PMID: 35908736 DOI: 10.1016/j.neures.2022.07.008] [Reference Citation Analysis]
5 Darwaiz T, Pasch B, Riede T. Postnatal remodeling of the laryngeal airway removes body size dependency of spectral features for ultrasonic whistling in laboratory mice. Journal of Zoology. [DOI: 10.1111/jzo.13003] [Reference Citation Analysis]
6 Vanderhoff EN, Bernal Hoverud N. Perspectives on Antiphonal Calling, Duetting and Counter-Singing in Non-primate Mammals: An Overview With Notes on the Coordinated Vocalizations of Bamboo Rats (Dactylomys spp., Rodentia: Echimyidae). Front Ecol Evol 2022;10:906546. [DOI: 10.3389/fevo.2022.906546] [Reference Citation Analysis]
7 Baker CA, McKellar C, Pang R, Nern A, Dorkenwald S, Pacheco DA, Eckstein N, Funke J, Dickson BJ, Murthy M. Neural network organization for courtship-song feature detection in Drosophila. Curr Biol 2022:S0960-9822(22)00978-2. [PMID: 35793679 DOI: 10.1016/j.cub.2022.06.019] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Haakenson CM, Balthazart J, Madison FN, Ball GF. The neural distribution of the avian homologue of oxytocin, mesotocin, in two songbird species, the zebra finch and the canary: A potential role in song perception and production. J of Comparative Neurology. [DOI: 10.1002/cne.25338] [Reference Citation Analysis]
9 Sosa R. Beyond belongingness: Rethinking innate behavioral predispositions, learning constraints, and cognitive capacities. Adaptive Behavior. [DOI: 10.1177/10597123221097451] [Reference Citation Analysis]
10 Zheng DJ, Okobi DE Jr, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus. J Comp Neurol 2022. [PMID: 35385140 DOI: 10.1002/cne.25321] [Reference Citation Analysis]
11 Banerjee A, Vallentin D. Convergent behavioral strategies and neural computations during vocal turn-taking across diverse species. Current Opinion in Neurobiology 2022;73:102529. [DOI: 10.1016/j.conb.2022.102529] [Reference Citation Analysis]
12 Taylor D, Clay Z, Dahl CD, Zuberbühler K, Davila-ross M, Dezecache G. Vocal functional flexibility: what it is and why it matters. Animal Behaviour 2022;186:93-100. [DOI: 10.1016/j.anbehav.2022.01.015] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Adret P. Developmental Plasticity in Primate Coordinated Song: Parallels and Divergences With Duetting Songbirds. Front Ecol Evol 2022;10:862196. [DOI: 10.3389/fevo.2022.862196] [Reference Citation Analysis]
14 Belyk M, Eichert N, McGettigan C. A dual larynx motor networks hypothesis. Philos Trans R Soc Lond B Biol Sci 2021;376:20200392. [PMID: 34719252 DOI: 10.1098/rstb.2020.0392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Kent RD. The maturational gradient of infant vocalizations: Developmental stages and functional modules. Infant Behav Dev 2021;66:101682. [PMID: 34920296 DOI: 10.1016/j.infbeh.2021.101682] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Fernández GJ, Carro ME, Koenig W. Alarm calls of southern house wrens, Troglodytes aedon bonariae , convey information about the level of risk. Ethology. [DOI: 10.1111/eth.13255] [Reference Citation Analysis]
17 Boari S, Mindlin GB, Amador A. Neural oscillations are locked to birdsong rhythms in canaries. Eur J Neurosci 2021. [PMID: 34852183 DOI: 10.1111/ejn.15552] [Reference Citation Analysis]
18 Patel AD. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philos Trans R Soc Lond B Biol Sci 2021;376:20200326. [PMID: 34420384 DOI: 10.1098/rstb.2020.0326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Rose EM, Prior NH, Ball GF. The singing question: re-conceptualizing birdsong. Biol Rev Camb Philos Soc 2021. [PMID: 34609054 DOI: 10.1111/brv.12800] [Reference Citation Analysis]
20 Rendall D. Aping Language: Historical Perspectives on the Quest for Semantics, Syntax, and Other Rarefied Properties of Human Language in the Communication of Primates and Other Animals. Front Psychol 2021;12:675172. [PMID: 34366994 DOI: 10.3389/fpsyg.2021.675172] [Reference Citation Analysis]
21 Amador A, Mindlin GB. Synthetic Birdsongs as a Tool to Induce, and Iisten to, Replay Activity in Sleeping Birds. Front Neurosci 2021;15:647978. [PMID: 34290576 DOI: 10.3389/fnins.2021.647978] [Reference Citation Analysis]
22 Döppler JF, Peltier M, Amador A, Goller F, Mindlin GB. Replay of innate vocal patterns during night sleep in suboscines. Proc Biol Sci 2021;288:20210610. [PMID: 34187198 DOI: 10.1098/rspb.2021.0610] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Beeck VC, Heilmann G, Kerscher M, Stoeger AS. A novel theory of Asian elephant high-frequency squeak production. BMC Biol 2021;19:121. [PMID: 34134675 DOI: 10.1186/s12915-021-01026-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Tran TM, Sherwood JK, Doolittle MJ, Sathler MF, Hofmann F, Stone-Roy LM, Kim S. Loss of cGMP-dependent protein kinase II alters ultrasonic vocalizations in mice, a model for speech impairment in human microdeletion 4q21 syndrome. Neurosci Lett 2021;759:136048. [PMID: 34126178 DOI: 10.1016/j.neulet.2021.136048] [Reference Citation Analysis]
25 Veit L, Tian LY, Monroy Hernandez CJ, Brainard MS. Songbirds can learn flexible contextual control over syllable sequencing. Elife 2021;10:e61610. [PMID: 34060473 DOI: 10.7554/eLife.61610] [Reference Citation Analysis]
26 Osmanski MS, Seki Y, Dooling RJ. Constraints on vocal production learning in budgerigars (Melopsittacus undulates). Learn Behav 2021;49:150-8. [PMID: 33651320 DOI: 10.3758/s13420-021-00465-6] [Reference Citation Analysis]
27 Gavrilov N, Nieder A. Distinct neural networks for the volitional control of vocal and manual actions in the monkey homologue of Broca's area. Elife 2021;10:e62797. [PMID: 33534697 DOI: 10.7554/eLife.62797] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Buffenstein R. Colony-specific dialects of naked mole-rats. Science 2021;371:461-2. [PMID: 33510012 DOI: 10.1126/science.abf7962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kersten Y, Friedrich-Müller B, Nieder A. A histological study of the song system of the carrion crow (Corvus corone). J Comp Neurol 2021;529:2576-95. [PMID: 33474740 DOI: 10.1002/cne.25112] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
30 Cannon JJ, Patel AD. How Beat Perception Co-opts Motor Neurophysiology. Trends Cogn Sci 2021;25:137-50. [PMID: 33353800 DOI: 10.1016/j.tics.2020.11.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
31 Wang J, Li Q, Yang C. Coevolution of acoustical communication between obligate avian brood parasites and their hosts. Avian Res 2020;11. [DOI: 10.1186/s40657-020-00229-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Valle-Bautista R, Márquez-Valadez B, Fragoso-Cabrera AD, García-López G, Díaz NF, Herrera-López G, Griego E, Galván EJ, Arias-Montaño JA, Molina-Hernández A. Impaired Cortical Cytoarchitecture and Reduced Excitability of Deep-Layer Neurons in the Offspring of Diabetic Rats. Front Cell Dev Biol 2020;8:564561. [PMID: 33042999 DOI: 10.3389/fcell.2020.564561] [Reference Citation Analysis]
33 Méndez JM, Goller F. Multifunctional bilateral muscle control of vocal output in the songbird syrinx. J Neurophysiol 2020;124:1857-74. [PMID: 33026896 DOI: 10.1152/jn.00332.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Haakenson CM, Balthazart J, Ball GF. Effects of Inactivation of the Periaqueductal Gray on Song Production in Testosterone-Treated Male Canaries (Serinus canaria). eNeuro 2020;7:ENEURO. [PMID: 32737183 DOI: 10.1523/ENEURO.0048-20.2020] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
35 Brecht KF, Nieder A. Parting self from others: Individual and self-recognition in birds. Neurosci Biobehav Rev 2020;116:99-108. [PMID: 32534901 DOI: 10.1016/j.neubiorev.2020.06.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
36 Fishbein AR, Fritz JB, Idsardi WJ, Wilkinson GS. What can animal communication teach us about human language? Philos Trans R Soc Lond B Biol Sci 2020;375:20190042. [PMID: 31735148 DOI: 10.1098/rstb.2019.0042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]