BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hu FY, Hanna GM, Han W, Mardini F, Thomas SA, Wyner AJ, Kelz MB. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice. Anesthesiology 2012;117:1006-17. [PMID: 23042227 DOI: 10.1097/ALN.0b013e3182700ab9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Forman SA. The expanding genetic toolkit for exploring mechanisms of general anesthesia. Anesthesiology 2013;118:769-71. [PMID: 23364596 DOI: 10.1097/ALN.0b013e318287b7e4] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
2 Mashour GA. Top-down mechanisms of anesthetic-induced unconsciousness. Front Syst Neurosci 2014;8:115. [PMID: 25002838 DOI: 10.3389/fnsys.2014.00115] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 7.4] [Reference Citation Analysis]
3 Zhou X, Wang Y, Zhang C, Wang M, Zhang M, Yu L, Yan M. The Role of Dopaminergic VTA Neurons in General Anesthesia. PLoS One 2015;10:e0138187. [PMID: 26398236 DOI: 10.1371/journal.pone.0138187] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
4 Kretschmannova K, Hines RM, Revilla-Sanchez R, Terunuma M, Tretter V, Jurd R, Kelz MB, Moss SJ, Davies PA. Enhanced tonic inhibition influences the hypnotic and amnestic actions of the intravenous anesthetics etomidate and propofol. J Neurosci 2013;33:7264-73. [PMID: 23616535 DOI: 10.1523/JNEUROSCI.5475-12.2013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
5 Hemmings HC Jr, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019;40:464-81. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 19.3] [Reference Citation Analysis]
6 Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022. [PMID: 35362070 DOI: 10.1097/ALN.0000000000004148] [Reference Citation Analysis]
7 Ma Y, Miracca G, Yu X, Harding EC, Miao A, Yustos R, Vyssotski AL, Franks NP, Wisden W. Galanin Neurons Unite Sleep Homeostasis and α2-Adrenergic Sedation. Curr Biol 2019;29:3315-3322.e3. [PMID: 31543455 DOI: 10.1016/j.cub.2019.07.087] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
8 Keilholz SD, Pan WJ, Billings J, Nezafati M, Shakil S. Noise and non-neuronal contributions to the BOLD signal: applications to and insights from animal studies. Neuroimage 2017;154:267-81. [PMID: 28017922 DOI: 10.1016/j.neuroimage.2016.12.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
9 Feng ZX, Dong H, Qu WM, Zhang W. Oral Delivered Dexmedetomidine Promotes and Consolidates Non-rapid Eye Movement Sleep via Sleep-Wake Regulation Systems in Mice. Front Pharmacol 2018;9:1196. [PMID: 30568589 DOI: 10.3389/fphar.2018.01196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
10 Zhang Z, Ferretti V, Güntan İ, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci 2015;18:553-61. [PMID: 25706476 DOI: 10.1038/nn.3957] [Cited by in Crossref: 118] [Cited by in F6Publishing: 109] [Article Influence: 16.9] [Reference Citation Analysis]
11 Kelz MB, García PS, Mashour GA, Solt K. Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019;128:726-36. [PMID: 30883418 DOI: 10.1213/ANE.0000000000004006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
12 Wei Y, Zhang D, Zuo Y. Metabolomics and Whole-Exome Sequencing in Patients with Differential Sensitivity to Sevoflurane: A Protocol for a Prospective Observational Trial. Front Pharmacol 2021;12:621159. [PMID: 34790114 DOI: 10.3389/fphar.2021.621159] [Reference Citation Analysis]
13 McCarren HS, Chalifoux MR, Han B, Moore JT, Meng QC, Baron-Hionis N, Sedigh-Sarvestani M, Contreras D, Beck SG, Kelz MB. α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J Neurosci 2014;34:16385-96. [PMID: 25471576 DOI: 10.1523/JNEUROSCI.1135-14.2014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
14 Wasilczuk AZ, Maier KL, Kelz MB. The Mouse as a Model Organism for Assessing Anesthetic Sensitivity. Methods Enzymol 2018;602:211-28. [PMID: 29588030 DOI: 10.1016/bs.mie.2018.01.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
15 Kelz MB, Mashour GA. The Biology of General Anesthesia from Paramecium to Primate. Curr Biol 2019;29:R1199-210. [PMID: 31743680 DOI: 10.1016/j.cub.2019.09.071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
16 Song AH, Kucyi A, Napadow V, Brown EN, Loggia ML, Akeju O. Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans. J Neurosci. 2017;37:6938-6945. [PMID: 28626012 DOI: 10.1523/jneurosci.0446-17.2017] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 8.6] [Reference Citation Analysis]
17 Sen T, Sen N. Isoflurane-induced inactivation of CREB through histone deacetylase 4 is responsible for cognitive impairment in developing brain. Neurobiol Dis 2016;96:12-21. [PMID: 27544482 DOI: 10.1016/j.nbd.2016.08.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
18 Scharf MT, Kelz MB. Sleep and Anesthesia Interactions: A Pharmacological Appraisal. Curr Anesthesiol Rep 2013;3:1-9. [PMID: 23440738 DOI: 10.1007/s40140-012-0007-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
19 Vazey EM, Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci USA. 2014;111:3859-3864. [PMID: 24567395 DOI: 10.1073/pnas.1310025111] [Cited by in Crossref: 137] [Cited by in F6Publishing: 127] [Article Influence: 17.1] [Reference Citation Analysis]
20 Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018;12:4. [PMID: 29434539 DOI: 10.3389/fncir.2018.00004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
21 Hara M, Zhou ZY, Hemmings HC Jr. α2-Adrenergic Receptor and Isoflurane Modulation of Presynaptic Ca2+ Influx and Exocytosis in Hippocampal Neurons. Anesthesiology 2016;125:535-46. [PMID: 27337223 DOI: 10.1097/ALN.0000000000001213] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
22 McCarren HS, Moore JT, Kelz MB. Assessing changes in volatile general anesthetic sensitivity of mice after local or systemic pharmacological intervention. J Vis Exp 2013;:e51079. [PMID: 24192721 DOI: 10.3791/51079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]