BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu WW, Wei SZ, Huang GD, Liu LB, Gu C, Shen Y, Wang XH, Xia ST, Xie AM, Hu LF, Wang F, Liu CF. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson's disease mouse model. FASEB J 2020;34:6570-81. [PMID: 32246801 DOI: 10.1096/fj.201901565RR] [Cited by in Crossref: 6] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Rojo D, Badner A, Gibson EM. Circadian Control of Glial Cell Homeodynamics. J Biol Rhythms 2022;:7487304221120966. [PMID: 36068711 DOI: 10.1177/07487304221120966] [Reference Citation Analysis]
2 Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022;:e13704. [PMID: 36056774 DOI: 10.1111/acel.13704] [Reference Citation Analysis]
3 Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022;:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Reference Citation Analysis]
4 Jiao L, Su LY, Liu Q, Luo R, Qiao X, Xie T, Yang LX, Chen C, Yao YG. GSNOR deficiency attenuates MPTP-induced neurotoxicity and autophagy by facilitating CDK5 S-nitrosation in a mouse model of Parkinson's disease. Free Radic Biol Med 2022:S0891-5849(22)00499-3. [PMID: 35918012 DOI: 10.1016/j.freeradbiomed.2022.07.016] [Reference Citation Analysis]
5 Chen Y, Yin Q, Cheng XY, Zhang JR, Jin H, Li K, Mao CJ, Wang F, Bei HZ, Liu CF. G2019S LRRK2 Mutation Enhances MPP+-Induced Inflammation of Human Induced Pluripotent Stem Cells-Differentiated Dopaminergic Neurons. Front Neurosci 2022;16:947927. [PMID: 35873822 DOI: 10.3389/fnins.2022.947927] [Reference Citation Analysis]
6 Yan X, Yang K, Xiao Q, Hou R, Pan X, Zhu X. Central role of microglia in sepsis-associated encephalopathy: From mechanism to therapy. Front Immunol 2022;13:929316. [DOI: 10.3389/fimmu.2022.929316] [Reference Citation Analysis]
7 Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022;137:104651. [PMID: 35367512 DOI: 10.1016/j.neubiorev.2022.104651] [Reference Citation Analysis]
8 Rausch WD, Wang F, Radad K. From the tyrosine hydroxylase hypothesis of Parkinson's disease to modern strategies: a short historical overview. J Neural Transm (Vienna) 2022. [PMID: 35460433 DOI: 10.1007/s00702-022-02488-3] [Reference Citation Analysis]
9 Wen J, Zhang Y, Liu D, Yao X, Jiang H, Zhang Y. Demethylenetetrahydroberberine protects dopaminergic neurons in a mouse model of Parkinson's disease. Chinese Journal of Natural Medicines 2022;20:111-9. [DOI: 10.1016/s1875-5364(22)60145-6] [Reference Citation Analysis]
10 Li S, Bi G, Han S, Huang R. MicroRNAs Play a Role in Parkinson’s Disease by Regulating Microglia Function: From Pathogenetic Involvement to Therapeutic Potential. Front Mol Neurosci 2022;14:744942. [DOI: 10.3389/fnmol.2021.744942] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Gong Y, Zhang G, Li B, Cao C, Cao D, Li X, Li H, Ye M, Shen H, Chen G. BMAL1 attenuates intracerebral hemorrhage-induced secondary brain injury in rats by regulating the Nrf2 signaling pathway. Ann Transl Med 2021;9:1617. [PMID: 34926661 DOI: 10.21037/atm-21-1863] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Nassan M, Videnovic A. Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 2021. [PMID: 34759373 DOI: 10.1038/s41582-021-00577-7] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
13 Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front Cell Infect Microbiol 2021;11:696554. [PMID: 34595127 DOI: 10.3389/fcimb.2021.696554] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han TL, Chen Q, Duan G, Ju D, Chen K, Deng F, He W; Biological Rhythm Academic Consortium in Chongqing (BRACQ). Circadian Clock-Controlled Checkpoints in the Pathogenesis of Complex Disease. Front Genet 2021;12:721231. [PMID: 34557221 DOI: 10.3389/fgene.2021.721231] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Palomino-Segura M, Hidalgo A. Circadian immune circuits. J Exp Med 2021;218:e20200798. [PMID: 33372990 DOI: 10.1084/jem.20200798] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
16 Liu Y, Niu L, Liu X, Cheng C, Le W. Recent Progress in Non-motor Features of Parkinson's Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci Bull 2021;37:1010-24. [PMID: 34128188 DOI: 10.1007/s12264-021-00711-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
17 Carter B, Justin HS, Gulick D, Gamsby JJ. The Molecular Clock and Neurodegenerative Disease: A Stressful Time. Front Mol Biosci 2021;8:644747. [PMID: 33889597 DOI: 10.3389/fmolb.2021.644747] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
18 Yang Z, Zhang X, Li C, Chi S, Xie A. Molecular Mechanisms Underlying Reciprocal Interactions Between Sleep Disorders and Parkinson's Disease. Front Neurosci 2020;14:592989. [PMID: 33642969 DOI: 10.3389/fnins.2020.592989] [Cited by in F6Publishing: 2] [Reference Citation Analysis]