BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nguyen TA, Park J, Dang TL, Choi YG, Kim VN. Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic Acids Res 2018;46:5726-36. [PMID: 29750274 DOI: 10.1093/nar/gky248] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Olsen GL, Calin GA, Varani G. Drug-like small molecules that inhibit expression of the oncogenic microRNA-21.. [DOI: 10.1101/2022.04.30.490150] [Reference Citation Analysis]
2 Chen G, Yang Y, Wu QJ, Cao L, Ruan W, Shao C, Jiang L, Tang P, Ma S, Jiang A, Wang Z, Wu K, Cliff Zhang Q, Fu XD, Zhou Y. ILF3 represses repeat-derived microRNAs targeting RIG-I mediated type I interferon response. J Mol Biol 2022;:167469. [PMID: 35120969 DOI: 10.1016/j.jmb.2022.167469] [Reference Citation Analysis]
3 Miller M, Siddiqi SA. Recent perspectives on therapeutic significance of microRNAs in hepatocellular carcinoma. Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma, Volume 3 2022. [DOI: 10.1016/b978-0-323-99283-1.00008-2] [Reference Citation Analysis]
4 Campos-melo D, Hawley ZC, Mclellan C, Strong MJ. MicroRNA turnover and nuclear function. MicroRNA 2022. [DOI: 10.1016/b978-0-323-89774-7.00026-1] [Reference Citation Analysis]
5 Nguyen TL, Nguyen TD, Nguyen TA. The conserved single-cleavage mechanism of animal DROSHA enzymes. Commun Biol 2021;4:1332. [PMID: 34824450 DOI: 10.1038/s42003-021-02860-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Liao GR, Tseng YY, Tseng CY, Lo CY, Hsu WL. The orf virus (ORFV) protein OV20.0 interacts with the microprocessor complex subunit DGCR8 to regulate miRNA biogenesis and ORFV infection. FEBS Lett 2021. [PMID: 34778960 DOI: 10.1002/1873-3468.14231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kim K, Baek SC, Lee YY, Bastiaanssen C, Kim J, Kim H, Kim VN. A quantitative map of human primary microRNA processing sites. Mol Cell 2021:S1097-2765(21)00545-1. [PMID: 34320405 DOI: 10.1016/j.molcel.2021.07.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
8 Rapozzi V, Juarranz A, Habib A, Ihan A, Strgar R. Is haem the real target of COVID-19? Photodiagnosis Photodyn Ther 2021;35:102381. [PMID: 34119708 DOI: 10.1016/j.pdpdt.2021.102381] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
9 Sampath C, Wilus D, Tabatabai M, Freeman ML, Gangula PR. Mechanistic role of antioxidants in rescuing delayed gastric emptying in high fat diet induced diabetic female mice. Biomed Pharmacother 2021;137:111370. [PMID: 33761597 DOI: 10.1016/j.biopha.2021.111370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021:S1044-579X(21)00063-8. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
11 Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2020;11:561917. [PMID: 33584641 DOI: 10.3389/fimmu.2020.561917] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
12 Traore ES, Li J, Chiura T, Geng J, Sachla AJ, Yoshimoto F, Eichenbaum Z, Davis I, Mak PJ, Liu A. Heme Binding to HupZ with a C-Terminal Tag from Group A Streptococcus. Molecules 2021;26:549. [PMID: 33494451 DOI: 10.3390/molecules26030549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Li S, Le TN, Nguyen TD, Trinh TA, Nguyen TA. Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biol 2021;18:1716-26. [PMID: 33382955 DOI: 10.1080/15476286.2020.1868139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
14 Kwon SC, Jang H, Shen S, Baek SC, Kim K, Yang J, Kim J, Kim JS, Wang S, Shi Y, Li F, Kim VN. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic Acids Res 2020;48:11097-112. [PMID: 33035348 DOI: 10.1093/nar/gkaa827] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
15 Cupido-Sánchez MG, Herrera-González NE, Mendoza CCB, Hernández MLM, Ramón-Gallegos E. In silico analysis of the association of hsa-miR-16 expression and cell survival in MDA-MB-231 breast cancer cells subjected to photodynamic therapy. Photodiagnosis Photodyn Ther 2021;33:102106. [PMID: 33217568 DOI: 10.1016/j.pdpdt.2020.102106] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Baisden JT, Boyer JA, Zhao B, Hammond SM, Zhang Q. Visualizing a protonated RNA state that modulates microRNA-21 maturation. Nat Chem Biol 2021;17:80-8. [PMID: 33106660 DOI: 10.1038/s41589-020-00667-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
17 Le CT, Nguyen TL, Nguyen TD, Nguyen TA. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a. RNA 2020;26:1777-86. [PMID: 32994184 DOI: 10.1261/rna.077487.120] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
18 Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020;21:E6603. [PMID: 32917057 DOI: 10.3390/ijms21186603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Vorozheykin PS, Titov II. Erratum to: How Animal miRNAs Structure Influences Their Biogenesis. Russ J Genet 2020;56:1012-1024. [DOI: 10.1134/s1022795420220019] [Reference Citation Analysis]
20 Dang TL, Le CT, Le MN, Nguyen TD, Nguyen TL, Bao S, Li S, Nguyen TA. Select amino acids in DGCR8 are essential for the UGU-pri-miRNA interaction and processing. Commun Biol 2020;3:344. [PMID: 32620823 DOI: 10.1038/s42003-020-1071-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
21 Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 2020;36:101607. [PMID: 32593128 DOI: 10.1016/j.redox.2020.101607] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 22.5] [Reference Citation Analysis]
22 Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020;8:409. [PMID: 32582699 DOI: 10.3389/fcell.2020.00409] [Cited by in Crossref: 92] [Cited by in F6Publishing: 104] [Article Influence: 46.0] [Reference Citation Analysis]
23 Nguyen TL, Nguyen TD, Bao S, Li S, Nguyen TA. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor. Nucleic Acids Res 2020;48:2579-93. [PMID: 31956890 DOI: 10.1093/nar/gkaa018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
24 Kwon SC, Jang H, Yang J, Kim J, Baek SC, Kim J, Kim VN. ERH as a component of the Microprocessor facilitates the maturation of suboptimal microRNAs.. [DOI: 10.1101/2020.05.13.093278] [Reference Citation Analysis]
25 Shoffner GM, Peng Z, Guo F. Structures of microRNA-precursor apical junctions and loops reveal non-canonical base pairs important for processing.. [DOI: 10.1101/2020.05.05.078014] [Reference Citation Analysis]
26 Li S, Nguyen TD, Nguyen TL, Nguyen TA. Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor. Nat Commun 2020;11:1926. [PMID: 32317642 DOI: 10.1038/s41467-020-15674-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
27 Partin AC, Zhang K, Jeong BC, Herrell E, Li S, Chiu W, Nam Y. Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA. Mol Cell 2020;78:411-422.e4. [PMID: 32220646 DOI: 10.1016/j.molcel.2020.02.016] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 22.5] [Reference Citation Analysis]
28 Weitz SH, Quick-cleveland J, Jacob JP, Barr I, Senturia R, Koyano K, Xiao X, Weiss S, Guo F. Fe(III) heme sets an activation threshold for processing distinct groups of pri-miRNAs in mammalian cells.. [DOI: 10.1101/2020.02.18.955294] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E. The Multifaceted Role of Heme in Cancer. Front Oncol 2019;9:1540. [PMID: 32010627 DOI: 10.3389/fonc.2019.01540] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 25.0] [Reference Citation Analysis]
30 Min KW, Evans JG, Won EC, Yoon JH. Detection of MicroRNAs Released from Argonautes. Methods Mol Biol 2020;2106:151-9. [PMID: 31889256 DOI: 10.1007/978-1-0716-0231-7_9] [Reference Citation Analysis]
31 Vorozheykin PS, Titov II. How miRNA Structure of Animals Influences Their Biogenesis. Russ J Genet 2020;56:17-29. [DOI: 10.1134/s1022795420010135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Baisden JT, Boyer JA, Zhao B, Zhang Q. Visualizing a protonated RNA state that modulates microRNA-21 maturation.. [DOI: 10.1101/852822] [Reference Citation Analysis]
33 Siddeek B, Mauduit C, Chehade H, Blin G, Liand M, Chindamo M, Benahmed M, Simeoni U. Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis. Cell Death Discov 2019;5:71. [PMID: 30854230 DOI: 10.1038/s41420-019-0153-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
34 Kwon SC, Baek SC, Choi Y, Yang J, Lee Y, Woo J, Kim VN. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing. Molecular Cell 2019;73:505-518.e5. [DOI: 10.1016/j.molcel.2018.11.005] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
35 Guo WT, Wang Y. Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci 2019;76:1697-711. [PMID: 30694346 DOI: 10.1007/s00018-019-03020-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
36 Nguyen HM, Nguyen TD, Nguyen TL, Nguyen TA. Orientation of Human Microprocessor on Primary MicroRNAs. Biochemistry 2019;58:189-98. [DOI: 10.1021/acs.biochem.8b00944] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
37 Saliminejad K, KhorramKhorshid HR, SoleymaniFard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234:5451-5465. [PMID: 30471116 DOI: 10.1002/jcp.27486] [Cited by in Crossref: 504] [Cited by in F6Publishing: 548] [Article Influence: 126.0] [Reference Citation Analysis]
38 Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019;25:1-16. [PMID: 30333195 DOI: 10.1261/rna.068692.118] [Cited by in Crossref: 262] [Cited by in F6Publishing: 272] [Article Influence: 65.5] [Reference Citation Analysis]
39 Kim K, Nguyen TD, Li S, Nguyen TA. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA 2018;24:892-8. [PMID: 29615481 DOI: 10.1261/rna.065862.118] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]