BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Damiano M, Diguet E, Malgorn C, D'Aurelio M, Galvan L, Petit F, Benhaim L, Guillermier M, Houitte D, Dufour N, Hantraye P, Canals JM, Alberch J, Delzescaux T, Déglon N, Beal MF, Brouillet E. A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 2013;22:3869-82. [PMID: 23720495 DOI: 10.1093/hmg/ddt242] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Mcdonald TS, Lerskiatiphanich T, Woodruff TM, Mccombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2022. [DOI: 10.1177/0271678x221135061] [Reference Citation Analysis]
2 Bazzani V, Equisoain Redin M, Mchale J, Perrone L, Vascotto C. Mitochondrial DNA Repair in Neurodegenerative Diseases and Ageing. IJMS 2022;23:11391. [DOI: 10.3390/ijms231911391] [Reference Citation Analysis]
3 Lopes C, Ferreira IL, Maranga C, Beatriz M, Mota SI, Sereno J, Castelhano J, Abrunhosa A, Oliveira F, De Rosa M, Hayden M, Laço MN, Januário C, Castelo Branco M, Rego AC. Mitochondrial and redox modifications in early stages of Huntington's disease. Redox Biol 2022;56:102424. [PMID: 35988447 DOI: 10.1016/j.redox.2022.102424] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Vanisova M, Stufkova H, Kohoutova M, Rakosnikova T, Krizova J, Klempir J, Rysankova I, Roth J, Zeman J, Hansikova H. Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease. Ultrastruct Pathol 2022;:1-14. [PMID: 35946926 DOI: 10.1080/01913123.2022.2100951] [Reference Citation Analysis]
5 Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Progress in Neurobiology 2022. [DOI: 10.1016/j.pneurobio.2022.102289] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Lopes C, Luísa Ferreira I, Maranga C, Beatriz M, Mota SI, Sereno J, Castelhano J, Abrunhosa A, Oliveira F, De Rosa M, Hayden M, Laço MN, Januário C, Branco MC, Rego AC. Mitochondrial and redox modifications in early stages of Huntington’s disease.. [DOI: 10.1101/2022.01.14.476381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Roy R, Paul R, Bhattacharyya P, Borah A. Assessment of Mitochondrial Complex II and III Activity in Brain Sections: A Histoenzymological Technique. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2309-1_4] [Reference Citation Analysis]
8 González LF, Bevilacqua LE, Naves R. Nanotechnology-Based Drug Delivery Strategies to Repair the Mitochondrial Function in Neuroinflammatory and Neurodegenerative Diseases. Pharmaceutics 2021;13:2055. [PMID: 34959337 DOI: 10.3390/pharmaceutics13122055] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Brustovetsky T, Khanna R, Brustovetsky N. Involvement of CRMP2 in Regulation of Mitochondrial Morphology and Motility in Huntington's Disease. Cells 2021;10:3172. [PMID: 34831395 DOI: 10.3390/cells10113172] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. Sci China Life Sci 2021;64:1842-57. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Burtscher J, Pepe G, Marracino F, Capocci L, Giova S, Millet GP, Di Pardo A, Maglione V. Brain Region and Cell Compartment Dependent Regulation of Electron Transport System Components in Huntington's Disease Model Mice. Brain Sci 2021;11:1267. [PMID: 34679332 DOI: 10.3390/brainsci11101267] [Reference Citation Analysis]
12 Tereshchenko A, van der Plas E, Mathews KD, Epping E, Conrad AL, Langbehn DR, Nopoulos P. Developmental Trajectory of Height, Weight, and BMI in Children and Adolescents at Risk for Huntington's Disease: Effect of mHTT on Growth. J Huntingtons Dis 2020;9:245-51. [PMID: 32894247 DOI: 10.3233/JHD-200407] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Hamilton J, Brustovetsky T, Khanna R, Brustovetsky N. Mutant huntingtin does not cross the mitochondrial outer membrane. Hum Mol Genet 2020;29:2962-75. [PMID: 32821928 DOI: 10.1093/hmg/ddaa185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Cresto N, Gardier C, Gaillard MC, Gubinelli F, Roost P, Molina D, Josephine C, Dufour N, Auregan G, Guillermier M, Bernier S, Jan C, Gipchtein P, Hantraye P, Chartier-Harlin MC, Bonvento G, Van Camp N, Taymans JM, Cambon K, Liot G, Bemelmans AP, Brouillet E. The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo. Int J Mol Sci 2021;22:6760. [PMID: 34201785 DOI: 10.3390/ijms22136760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Burtscher J, Millet GP, Place N, Kayser B, Zanou N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int J Mol Sci 2021;22:6479. [PMID: 34204228 DOI: 10.3390/ijms22126479] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
16 Machiela E, Southwell AL. Biological Aging and the Cellular Pathogenesis of Huntington's Disease. J Huntingtons Dis 2020;9:115-28. [PMID: 32417788 DOI: 10.3233/JHD-200395] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
17 Subramaniam S. Exaggerated mitophagy: a weapon of striatal destruction in the brain? Biochem Soc Trans 2020;48:709-17. [PMID: 32129826 DOI: 10.1042/BST20191283] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Subramaniam S, Shahani N. Ribosome Profiling Reveals a Dichotomy Between Ribosome Occupancy of Nuclear-Encoded and Mitochondrial-Encoded OXPHOS mRNA Transcripts in a Striatal Cell Model of Huntington Disease.. [DOI: 10.1101/2021.01.30.428960] [Reference Citation Analysis]
19 Burtscher J, Maglione V, Di Pardo A, Millet GP, Schwarzer C, Zangrandi L. A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021;22:E582. [PMID: 33430140 DOI: 10.3390/ijms22020582] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
20 Alam S, Abdullah CS, Aishwarya R, Morshed M, Nitu SS, Miriyala S, Panchatcharam M, Kevil CG, Orr AW, Bhuiyan MS. Dysfunctional Mitochondrial Dynamic and Oxidative Phosphorylation Precedes Cardiac Dysfunction in R120G-αB-Crystallin-Induced Desmin-Related Cardiomyopathy. J Am Heart Assoc 2020;9:e017195. [PMID: 33208022 DOI: 10.1161/JAHA.120.017195] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
21 Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019;16:957-78. [PMID: 31529216 DOI: 10.1007/s13311-019-00782-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
22 Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington's disease. Neurodegener Dis Manag 2020;10:243-55. [PMID: 32746707 DOI: 10.2217/nmt-2019-0033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Burtscher J, Di Pardo A, Maglione V, Schwarzer C, Squitieri F. Mitochondrial Respiration Changes in R6/2 Huntington's Disease Model Mice during Aging in a Brain Region Specific Manner. Int J Mol Sci 2020;21:E5412. [PMID: 32751413 DOI: 10.3390/ijms21155412] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Maxan A, Sciacca G, Alpaugh M, Tao Z, Breger L, Dehay B, Ling Z, Chuan Q, Cisbani G, Masnata M, Salem S, Lacroix S, Oueslati A, Bezard E, Cicchetti F. Use of adeno-associated virus-mediated delivery of mutant huntingtin to study the spreading capacity of the protein in mice and non-human primates. Neurobiol Dis 2020;141:104951. [PMID: 32439599 DOI: 10.1016/j.nbd.2020.104951] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
25 Moosavi B, Zhu X, Yang W, Yang G. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function. Biological Chemistry 2020;401:319-30. [DOI: 10.1515/hsz-2019-0264] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
26 Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M, Martinez-Vicente M. Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy 2021;17:672-89. [PMID: 32093570 DOI: 10.1080/15548627.2020.1728096] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 27.0] [Reference Citation Analysis]
27 Cai Q, Jeong YY. Mitophagy in Alzheimer's Disease and Other Age-Related Neurodegenerative Diseases. Cells 2020;9:E150. [PMID: 31936292 DOI: 10.3390/cells9010150] [Cited by in Crossref: 90] [Cited by in F6Publishing: 99] [Article Influence: 45.0] [Reference Citation Analysis]
28 Jen WP, Chen HM, Lin YS, Chern Y, Lee YC. Twist1 Plays an Anti-apoptotic Role in Mutant Huntingtin Expression Striatal Progenitor Cells. Mol Neurobiol 2020;57:1688-703. [PMID: 31813126 DOI: 10.1007/s12035-019-01836-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Hamilton J, Brustovetsky T, Brustovetsky N. Mutant huntingtin fails to directly impair brain mitochondria. J Neurochem 2019;151:716-31. [PMID: 31418857 DOI: 10.1111/jnc.14852] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
30 Polyzos AA, Lee DY, Datta R, Hauser M, Budworth H, Holt A, Mihalik S, Goldschmidt P, Frankel K, Trego K, Bennett MJ, Vockley J, Xu K, Gratton E, McMurray CT. Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metab 2019;29:1258-1273.e11. [PMID: 30930170 DOI: 10.1016/j.cmet.2019.03.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 22.3] [Reference Citation Analysis]
31 Cowan K, Anichtchik O, Luo S. Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther 2019;25:825-36. [PMID: 30746905 DOI: 10.1111/cns.13105] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
32 Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion. 2019;47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 16.3] [Reference Citation Analysis]
33 Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington's disease. Rev Neurosci 2018;29:547-55. [PMID: 29303786 DOI: 10.1515/revneuro-2017-0075] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
34 Dubinsky JM. Towards an Understanding of Energy Impairment in Huntington's Disease Brain. J Huntingtons Dis 2017;6:267-302. [PMID: 29125492 DOI: 10.3233/JHD-170264] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
35 Askeland G, Dosoudilova Z, Rodinova M, Klempir J, Liskova I, Kuśnierczyk A, Bjørås M, Nesse G, Klungland A, Hansikova H, Eide L. Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington's disease patients. Sci Rep 2018;8:9817. [PMID: 29959348 DOI: 10.1038/s41598-018-27985-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
36 Franco-iborra S, Plaza-zabala A, Sebastian D, Vila M, Martinez-vicente M. Impairment of neuronal mitophagy by mutant huntingtin.. [DOI: 10.1101/330001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019;30:1450-99. [PMID: 29634350 DOI: 10.1089/ars.2017.7321] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 13.8] [Reference Citation Analysis]
38 Peng C, Zhu G, Liu X, Li H. Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C. Neurosci Bull 2018;34:747-58. [PMID: 29713895 DOI: 10.1007/s12264-018-0230-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
39 Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med 2018;20:174-204. [PMID: 29572723 DOI: 10.1007/s12017-018-8486-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
40 Correia SC, Moreira PI. Role of Mitochondria in Neurodegenerative Diseases: The Dark Side of the “Energy Factory”. In: Oliveira PJ, editor. Mitochondrial Biology and Experimental Therapeutics. Cham: Springer International Publishing; 2018. pp. 213-39. [DOI: 10.1007/978-3-319-73344-9_11] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
41 Jodeiri Farshbaf M, Kiani-Esfahani A. Succinate dehydrogenase: Prospect for neurodegenerative diseases. Mitochondrion 2018;42:77-83. [PMID: 29225013 DOI: 10.1016/j.mito.2017.12.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
42 Wright DJ, Renoir T, Gray LJ, Hannan AJ. Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets. In: Beart P, Robinson M, Rattray M, Maragakis NJ, editors. Neurodegenerative Diseases. Cham: Springer International Publishing; 2017. pp. 93-128. [DOI: 10.1007/978-3-319-57193-5_4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Silva-Palacios A, Colín-González AL, López-Cervantes SP, Zazueta C, Luna-López A, Santamaría A, Königsberg M. Tert-buthylhydroquinone pre-conditioning exerts dual effects in old female rats exposed to 3-nitropropionic acid. Redox Biol 2017;12:610-24. [PMID: 28391182 DOI: 10.1016/j.redox.2017.03.029] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
44 He Y, Akumuo RC, Yang Y, Hewett SJ. Mice deficient in L-12/15 lipoxygenase show increased vulnerability to 3-nitropropionic acid neurotoxicity. Neurosci Lett 2017;643:65-9. [PMID: 28229935 DOI: 10.1016/j.neulet.2017.02.031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
45 Liot G, Valette J, Pépin J, Flament J, Brouillet E. Energy defects in Huntington's disease: Why “in vivo” evidence matters. Biochemical and Biophysical Research Communications 2017;483:1084-95. [DOI: 10.1016/j.bbrc.2016.09.065] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 9.2] [Reference Citation Analysis]
46 Hamilton J, Brustovetsky T, Brustovetsky N. Oxidative metabolism and Ca2+ handling in striatal mitochondria from YAC128 mice, a model of Huntington's disease. Neurochem Int 2017;109:24-33. [PMID: 28062223 DOI: 10.1016/j.neuint.2017.01.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
47 Arun S, Liu L, Donmez G. Mitochondrial Biology and Neurological Diseases. Curr Neuropharmacol 2016;14:143-54. [PMID: 26903445 DOI: 10.2174/1570159x13666150703154541] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 12.7] [Reference Citation Analysis]
48 Polyzos AA, McMurray CT. The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 2017;161:181-97. [PMID: 27634555 DOI: 10.1016/j.mad.2016.09.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
49 Ratovitski T, Chaerkady R, Kammers K, Stewart JC, Zavala A, Pletnikova O, Troncoso JC, Rudnicki DD, Margolis RL, Cole RN, Ross CA. Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. J Proteome Res 2016;15:3266-83. [PMID: 27486686 DOI: 10.1021/acs.jproteome.6b00448] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
50 Wojtovich AP, Wei AY, Sherman TA, Foster TH, Nehrke K. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans. Sci Rep 2016;6:29695. [PMID: 27440050 DOI: 10.1038/srep29695] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
51 Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease. Hum Mol Genet 2016;25:2762-75. [PMID: 27131346 DOI: 10.1093/hmg/ddw133] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 1.7] [Reference Citation Analysis]
52 Mejia EM, Chau S, Sparagna GC, Sipione S, Hatch GM. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly. Lipids 2016;51:561-9. [PMID: 26846325 DOI: 10.1007/s11745-015-4110-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
53 De Mario A, Scarlatti C, Costiniti V, Primerano S, Lopreiato R, Calì T, Brini M, Giacomello M, Carafoli E. Calcium Handling by Endoplasmic Reticulum and Mitochondria in a Cell Model of Huntington's Disease. PLoS Curr 2016;8:ecurrents. [PMID: 26819834 DOI: 10.1371/currents.hd.37fcb1c9a27503dc845594ee4a7316c3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
54 Caboche J, Vanhoutte P, Boussicault L, Roze E, Betuing S. Cellular and Molecular Mechanisms of Neuronal Dysfunction in Huntington's Disease. Handbook of Behavioral Neuroscience 2016. [DOI: 10.1016/b978-0-12-802206-1.00045-3] [Reference Citation Analysis]
55 Courtes AA, Arantes LP, Barcelos RP, da Silva IK, Boligon AA, Athayde ML, Puntel RL, Soares FA. Protective Effects of Aqueous Extract of Luehea divaricata against Behavioral and Oxidative Changes Induced by 3-Nitropropionic Acid in Rats. Evid Based Complement Alternat Med 2015;2015:723431. [PMID: 26604972 DOI: 10.1155/2015/723431] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
56 Burtscher J, Zangrandi L, Schwarzer C, Gnaiger E. Differences in mitochondrial function in homogenated samples from healthy and epileptic specific brain tissues revealed by high-resolution respirometry. Mitochondrion 2015;25:104-12. [PMID: 26516105 DOI: 10.1016/j.mito.2015.10.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
57 Guedes-Dias P, Pinho BR, Soares TR, de Proença J, Duchen MR, Oliveira JM. Mitochondrial dynamics and quality control in Huntington's disease. Neurobiol Dis 2016;90:51-7. [PMID: 26388396 DOI: 10.1016/j.nbd.2015.09.008] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 10.6] [Reference Citation Analysis]
58 Chaudhary RK, Patel KA, Patel MK, Joshi RH, Roy I. Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington's Disease. Mol Ther 2015;23:1912-26. [PMID: 26310631 DOI: 10.1038/mt.2015.157] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
59 Kulasekaran G, Ganapasam S. Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells. Mol Cell Biochem 2015;409:199-211. [PMID: 26280522 DOI: 10.1007/s11010-015-2525-9] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.9] [Reference Citation Analysis]
60 Szalárdy L, Zádori D, Klivényi P, Toldi J, Vécsei L. Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. Oxid Med Cell Longev 2015;2015:498401. [PMID: 26301042 DOI: 10.1155/2015/498401] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
61 Leoni V, Caccia C. The impairment of cholesterol metabolism in Huntington disease. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2015;1851:1095-105. [DOI: 10.1016/j.bbalip.2014.12.018] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 9.9] [Reference Citation Analysis]
62 Herbst EA, Holloway GP. Exercise training normalizes mitochondrial respiratory capacity within the striatum of the R6/1 model of Huntington's disease. Neuroscience 2015;303:515-23. [PMID: 26186895 DOI: 10.1016/j.neuroscience.2015.07.025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
63 Carvalho C, Correia SC, Cardoso S, Plácido AI, Candeias E, Duarte AI, Moreira PI. The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Review of Neurotherapeutics 2015;15:867-84. [DOI: 10.1586/14737175.2015.1058160] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
64 Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism in YAC128 mouse model of Huntington's disease. Hum Mol Genet 2015;24:4862-78. [PMID: 26041817 DOI: 10.1093/hmg/ddv209] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 5.4] [Reference Citation Analysis]
65 Brustovetsky N. Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling. Mol Neurobiol 2016;53:2944-53. [PMID: 25941077 DOI: 10.1007/s12035-015-9188-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
66 Ben Haim L, Ceyzériat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, Ruiz M, Petit F, Houitte D, Faivre E, Vandesquille M, Aron-Badin R, Dhenain M, Déglon N, Hantraye P, Brouillet E, Bonvento G, Escartin C. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. J Neurosci 2015;35:2817-29. [PMID: 25673868 DOI: 10.1523/JNEUROSCI.3516-14.2015] [Cited by in Crossref: 161] [Cited by in F6Publishing: 173] [Article Influence: 23.0] [Reference Citation Analysis]
67 Besson MT, Alegría K, Garrido-Gerter P, Barros LF, Liévens JC. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One 2015;10:e0118765. [PMID: 25761110 DOI: 10.1371/journal.pone.0118765] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
68 Roselli F, Caroni P. From Intrinsic Firing Properties to Selective Neuronal Vulnerability in Neurodegenerative Diseases. Neuron 2015;85:901-10. [DOI: 10.1016/j.neuron.2014.12.063] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 10.0] [Reference Citation Analysis]
69 Hering T, Birth N, Taanman JW, Orth M. Selective striatal mtDNA depletion in end-stage Huntington's disease R6/2 mice. Exp Neurol 2015;266:22-9. [PMID: 25682918 DOI: 10.1016/j.expneurol.2015.02.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
70 Hickey M. Coenzyme Q10 and Behavior in Huntington’s Disease. Diet and Nutrition in Dementia and Cognitive Decline 2015. [DOI: 10.1016/b978-0-12-407824-6.00091-4] [Reference Citation Analysis]
71 Francelle L, Galvan L, Gaillard MC, Petit F, Bernay B, Guillermier M, Bonvento G, Dufour N, Elalouf JM, Hantraye P, Déglon N, de Chaldée M, Brouillet E. Striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo. Neurobiol Aging 2015;36:1601.e7-16. [PMID: 25619660 DOI: 10.1016/j.neurobiolaging.2014.11.014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
72 Grubman A, White AR, Liddell JR. Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br J Pharmacol 2014;171:2159-73. [PMID: 24206195 DOI: 10.1111/bph.12513] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
73 Francelle L, Galvan L, Gaillard MC, Guillermier M, Houitte D, Bonvento G, Petit F, Jan C, Dufour N, Hantraye P, Elalouf JM, De Chaldée M, Déglon N, Brouillet E. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease. Hum Mol Genet 2015;24:1563-73. [PMID: 25398949 DOI: 10.1093/hmg/ddu571] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
74 McQuade LR, Balachandran A, Scott HA, Khaira S, Baker MS, Schmidt U. Proteomics of Huntington's disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. J Proteome Res 2014;13:5648-59. [PMID: 25316320 DOI: 10.1021/pr500649m] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 5.1] [Reference Citation Analysis]
75 Török R, Kónya JA, Zádori D, Veres G, Szalárdy L, Vécsei L, Klivényi P. mRNA expression levels of PGC-1α in a transgenic and a toxin model of Huntington's disease. Cell Mol Neurobiol 2015;35:293-301. [PMID: 25319408 DOI: 10.1007/s10571-014-0124-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
76 Francelle L, Galvan L, Brouillet E. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease. Front Cell Neurosci 2014;8:295. [PMID: 25309327 DOI: 10.3389/fncel.2014.00295] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
77 Liu T, Im W, Lee S, Ban J, Chai YJ, Lee M, Mook-jung I, Chu K, Kim M. Modulation of mitochondrial function by stem cell-derived cellular components. Biochemical and Biophysical Research Communications 2014;448:403-8. [DOI: 10.1016/j.bbrc.2014.04.129] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
78 Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014;130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Cited by in Crossref: 75] [Cited by in F6Publishing: 74] [Article Influence: 9.4] [Reference Citation Analysis]
79 Brouillet E. The 3-NP Model of Striatal Neurodegeneration. Curr Protoc Neurosci 2014;67:9.48.1-14. [PMID: 24723322 DOI: 10.1002/0471142301.ns0948s67] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
80 Lim NK, Hung LW, Pang TY, Mclean CA, Liddell JR, Hilton JB, Li QX, White AR, Hannan AJ, Crouch PJ. Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington's disease affected brain. Hum Mol Genet 2014;23:4051-63. [PMID: 24634145 DOI: 10.1093/hmg/ddu119] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
81 Kudo T, Loh DH, Tahara Y, Truong D, Hernández-Echeagaray E, Colwell CS. Circadian dysfunction in response to in vivo treatment with the mitochondrial toxin 3-nitropropionic acid. ASN Neuro 2014;6:e00133. [PMID: 24328694 DOI: 10.1042/AN20130042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
82 Horan MP, Cooper DN. The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Hum Genet 2014;133:435-58. [DOI: 10.1007/s00439-013-1402-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]