BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Human Molecular Genetics 2010;19:4895-905. [DOI: 10.1093/hmg/ddq424] [Cited by in Crossref: 131] [Cited by in F6Publishing: 114] [Article Influence: 10.9] [Reference Citation Analysis]
Number Citing Articles
1 Bervini S, Herzog H. Mouse models of Prader-Willi Syndrome: a systematic review. Front Neuroendocrinol 2013;34:107-19. [PMID: 23391702 DOI: 10.1016/j.yfrne.2013.01.002] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 5.9] [Reference Citation Analysis]
2 Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016;24:207-43. [PMID: 27133257 DOI: 10.4062/biomolther.2016.061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
3 Babak T, DeVeale B, Tsang EK, Zhou Y, Li X, Smith KS, Kukurba KR, Zhang R, Li JB, van der Kooy D, Montgomery SB, Fraser HB. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet 2015;47:544-9. [PMID: 25848752 DOI: 10.1038/ng.3274] [Cited by in Crossref: 123] [Cited by in F6Publishing: 93] [Article Influence: 17.6] [Reference Citation Analysis]
4 Carias KV, Wevrick R. Preclinical Testing in Translational Animal Models of Prader-Willi Syndrome: Overview and Gap Analysis. Mol Ther Methods Clin Dev 2019;13:344-58. [PMID: 30989085 DOI: 10.1016/j.omtm.2019.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
5 Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021;23:150. [PMID: 35008574 DOI: 10.3390/ijms23010150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Wu MY, Jiang M, Zhai X, Beaudet AL, Wu RC. An unexpected function of the Prader-Willi syndrome imprinting center in maternal imprinting in mice. PLoS One 2012;7:e34348. [PMID: 22496793 DOI: 10.1371/journal.pone.0034348] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
7 Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Molecular and Cellular Endocrinology 2020;518:110924. [DOI: 10.1016/j.mce.2020.110924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
8 Crespi B. The evolutionary biology of child health. Proc Biol Sci 2011;278:1441-9. [PMID: 21288946 DOI: 10.1098/rspb.2010.2627] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
9 Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 2019;76:4009-21. [PMID: 31270580 DOI: 10.1007/s00018-019-03197-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
10 Peñagarikano O. Oxytocin in animal models of autism spectrum disorder: Oxytocin in Animal Models of Autism. Devel Neurobio 2017;77:202-13. [DOI: 10.1002/dneu.22449] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
11 Vaidyanathan R, Hammock EAD. Oxytocin receptor gene loss influences expression of the oxytocin gene in C57BL/6J mice in a sex- and age-dependent manner. J Neuroendocrinol 2020;32:e12821. [PMID: 31845417 DOI: 10.1111/jne.12821] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Kamaludin AA, Smolarchuk C, Bischof JM, Eggert R, Greer JJ, Ren J, Lee JJ, Yokota T, Berry FB, Wevrick R. Muscle dysfunction caused by loss of Magel2 in a mouse model of Prader-Willi and Schaaf-Yang syndromes. Hum Mol Genet 2016;25:3798-809. [PMID: 27436578 DOI: 10.1093/hmg/ddw225] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
13 Dombret C, Nguyen T, Schakman O, Michaud JL, Hardin-pouzet H, Bertrand MJ, De Backer O. Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. Human Molecular Genetics 2012;21:4703-17. [DOI: 10.1093/hmg/dds310] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]
14 Ferretti V, Maltese F, Contarini G, Nigro M, Bonavia A, Huang H, Gigliucci V, Morelli G, Scheggia D, Managò F, Castellani G, Lefevre A, Cancedda L, Chini B, Grinevich V, Papaleo F. Oxytocin Signaling in the Central Amygdala Modulates Emotion Discrimination in Mice. Current Biology 2019;29:1938-1953.e6. [DOI: 10.1016/j.cub.2019.04.070] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 17.3] [Reference Citation Analysis]
15 Fountain MD, Tao H, Chen CA, Yin J, Schaaf CP. Magel2 knockout mice manifest altered social phenotypes and a deficit in preference for social novelty. Genes Brain Behav 2017;16:592-600. [PMID: 28296079 DOI: 10.1111/gbb.12378] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
16 Kabasakalian A, Ferretti CJ, Hollander E. Oxytocin and Prader-Willi Syndrome. Curr Top Behav Neurosci 2018;35:529-57. [PMID: 28956320 DOI: 10.1007/7854_2017_28] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kenkel WM, Perkeybile AM, Yee JR, Pournajafi-Nazarloo H, Lillard TS, Ferguson EF, Wroblewski KL, Ferris CF, Carter CS, Connelly JJ. Behavioral and epigenetic consequences of oxytocin treatment at birth. Sci Adv 2019;5:eaav2244. [PMID: 31049395 DOI: 10.1126/sciadv.aav2244] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
18 Mokkonen M, Crespi BJ. Genomic conflicts and sexual antagonism in human health: insights from oxytocin and testosterone. Evol Appl 2015;8:307-25. [PMID: 25926877 DOI: 10.1111/eva.12244] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
19 Qian Y, Xia F, Zuo Y, Zhong M, Yang L, Jiang Y, Zou C. Do patients with Prader-Willi syndrome have favorable glucose metabolism? Orphanet J Rare Dis 2022;17:187. [PMID: 35525976 DOI: 10.1186/s13023-022-02344-3] [Reference Citation Analysis]
20 Mercer RE, Wevrick R. Energy homeostasis in Prader-Willi syndrome: how clinical research informs studies of animal models of genetic obesity: comment on "Nutritional phases in Prader-Willi syndrome," Miller et al., 2011. Am J Med Genet Part A, 155:1040-1049. Am J Med Genet A 2012;158A:966-8. [PMID: 22419655 DOI: 10.1002/ajmg.a.35249] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
21 Bakos J, Srancikova A, Havranek T, Bacova Z. Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast 2018;2018:4864107. [PMID: 30057594 DOI: 10.1155/2018/4864107] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
22 Iyer J, Girirajan S. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Briefings in Functional Genomics 2015;14:315-28. [DOI: 10.1093/bfgp/elv018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.9] [Reference Citation Analysis]
23 Israel JM, Cabelguen JM, Le Masson G, Oliet SH, Ciofi P. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction. Nat Commun 2014;5:3285. [PMID: 24518793 DOI: 10.1038/ncomms4285] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
24 Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020;295:16121-55. [PMID: 32921631 DOI: 10.1074/jbc.REV120.008029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
25 Greenwood MA, Hammock EA. Oxytocin receptor binding sites in the periphery of the neonatal mouse. PLoS One 2017;12:e0172904. [PMID: 28235051 DOI: 10.1371/journal.pone.0172904] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
26 Keverne EB. Epigenetics and brain evolution. Epigenomics 2011;3:183-91. [PMID: 22122280 DOI: 10.2217/epi.11.10] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
27 Kenkel W. Birth signalling hormones and the developmental consequences of caesarean delivery. J Neuroendocrinol 2021;33:e12912. [PMID: 33145818 DOI: 10.1111/jne.12912] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kuppens R, Donze S, Hokken‐koelega A. Promising effects of oxytocin on social and food‐related behaviour in young children with Prader–Willi syndrome: a randomized, double‐blind, controlled crossover trial. Clin Endocrinol 2016;85:979-87. [DOI: 10.1111/cen.13169] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 5.8] [Reference Citation Analysis]
29 Mogi K, Ooyama R, Nagasawa M, Kikusui T. Effects of neonatal oxytocin manipulation on development of social behaviors in mice. Physiology & Behavior 2014;133:68-75. [DOI: 10.1016/j.physbeh.2014.05.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
30 Tauber M, Hoybye C. Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol 2021;9:235-46. [PMID: 33647242 DOI: 10.1016/S2213-8587(21)00002-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 28.0] [Reference Citation Analysis]
31 Zahova S, Isles AR. Animal models for Prader-Willi syndrome. Handb Clin Neurol 2021;181:391-404. [PMID: 34238473 DOI: 10.1016/B978-0-12-820683-6.00029-4] [Reference Citation Analysis]
32 Golding DM, Rees DJ, Davies JR, Relkovic D, Furby HV, Guschina IA, Hopkins AL, Davies JS, Resnick JL, Isles AR, Wells T. Paradoxical leanness in the imprinting-centre deletion mouse model for Prader-Willi syndrome. J Endocrinol 2017;232:123-35. [PMID: 27799465 DOI: 10.1530/JOE-16-0367] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
33 Ates T, Oncul M, Dilsiz P, Topcu IC, Civas CC, Alp MI, Aklan I, Ates Oz E, Yavuz Y, Yilmaz B, Sayar Atasoy N, Atasoy D. Inactivation of Magel2 suppresses oxytocin neurons through synaptic excitation-inhibition imbalance. Neurobiol Dis 2019;121:58-64. [PMID: 30240706 DOI: 10.1016/j.nbd.2018.09.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
34 Quintana DS, Guastella AJ. An Allostatic Theory of Oxytocin. Trends Cogn Sci 2020;24:515-28. [PMID: 32360118 DOI: 10.1016/j.tics.2020.03.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 15.5] [Reference Citation Analysis]
35 Dai YC, Zhang HF, Schön M, Böckers TM, Han SP, Han JS, Zhang R. Neonatal Oxytocin Treatment Ameliorates Autistic-Like Behaviors and Oxytocin Deficiency in Valproic Acid-Induced Rat Model of Autism. Front Cell Neurosci 2018;12:355. [PMID: 30356897 DOI: 10.3389/fncel.2018.00355] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
36 Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021;9:730014. [PMID: 34760887 DOI: 10.3389/fcell.2021.730014] [Reference Citation Analysis]
37 Chen H, Victor AK, Klein J, Tacer KF, Tai DJ, de Esch C, Nuttle A, Temirov J, Burnett LC, Rosenbaum M, Zhang Y, Ding L, Moresco JJ, Diedrich JK, Yates JR 3rd, Tillman HS, Leibel RL, Talkowski ME, Billadeau DD, Reiter LT, Potts PR. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight 2020;5:138576. [PMID: 32879135 DOI: 10.1172/jci.insight.138576] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
38 Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist. 2012;18:467-486. [PMID: 22547529 DOI: 10.1177/1073858412438697] [Cited by in Crossref: 324] [Cited by in F6Publishing: 315] [Article Influence: 32.4] [Reference Citation Analysis]
39 Bischof JM, Wevrick R. Chronic diazoxide treatment decreases fat mass and improves endurance capacity in an obese mouse model of Prader-Willi syndrome. Mol Genet Metab 2018;123:511-7. [PMID: 29506955 DOI: 10.1016/j.ymgme.2018.02.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
40 Maillard J, Park S, Croizier S, Vanacker C, Cook JH, Prevot V, Tauber M, Bouret SG. Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Hum Mol Genet 2016;25:3208-15. [PMID: 27288456 DOI: 10.1093/hmg/ddw169] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
41 Tacer KF, Potts PR. Cellular and disease functions of the Prader-Willi Syndrome gene MAGEL2. Biochem J 2017;474:2177-90. [PMID: 28626083 DOI: 10.1042/BCJ20160616] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 6.6] [Reference Citation Analysis]
42 Althammer F, Muscatelli F, Grinevich V, Schaaf CP. Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry 2022;12:318. [PMID: 35941105 DOI: 10.1038/s41398-022-02054-1] [Reference Citation Analysis]
43 Takumi T. The neurobiology of mouse models syntenic to human chromosome 15q. J Neurodev Disord. 2011;3:270-281. [PMID: 21789598 DOI: 10.1007/s11689-011-9088-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
44 Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatković N, Plagge A. Postnatal changes in the expression pattern of the imprinted signalling protein XLαs underlie the changing phenotype of deficient mice. PLoS One 2012;7:e29753. [PMID: 22253771 DOI: 10.1371/journal.pone.0029753] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
45 Smit H. Effects of Imprinted Genes on the Development of Communicative Behavior: A Hypothesis. Biol Theory 2013;7:247-55. [DOI: 10.1007/s13752-012-0075-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
46 Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2013;68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Cited by in Crossref: 145] [Cited by in F6Publishing: 118] [Article Influence: 14.5] [Reference Citation Analysis]
47 Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. Birth Defects Res A Clin Mol Teratol 2011;91:682-92. [PMID: 21648055 DOI: 10.1002/bdra.20795] [Cited by in Crossref: 72] [Cited by in F6Publishing: 63] [Article Influence: 6.5] [Reference Citation Analysis]
48 Famelart N, Diene G, Çabal-Berthoumieu S, Glattard M, Molinas C, Guidetti M, Tauber M. Equivocal expression of emotions in children with Prader-Willi syndrome: what are the consequences for emotional abilities and social adjustment? Orphanet J Rare Dis 2020;15:55. [PMID: 32085791 DOI: 10.1186/s13023-020-1333-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 MacIver NJ. Oxytocin Treatment May Improve Infant Feeding and Social Skills in Prader-Willi Syndrome. Pediatrics 2017;139:e20163833. [PMID: 28100690 DOI: 10.1542/peds.2016-3833] [Reference Citation Analysis]
50 Rice LJ, Einfeld SL, Hu N, Carter CS. A review of clinical trials of oxytocin in Prader-Willi syndrome. Curr Opin Psychiatry 2018;31:123-7. [PMID: 29206687 DOI: 10.1097/YCO.0000000000000391] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 8.7] [Reference Citation Analysis]
51 Crespi B, Foster K, Úbeda F. First principles of Hamiltonian medicine. Philos Trans R Soc Lond B Biol Sci 2014;369:20130366. [PMID: 24686937 DOI: 10.1098/rstb.2013.0366] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
52 Rajamani KT, Wagner S, Grinevich V, Harony-Nicolas H. Oxytocin as a Modulator of Synaptic Plasticity: Implications for Neurodevelopmental Disorders. Front Synaptic Neurosci 2018;10:17. [PMID: 29970997 DOI: 10.3389/fnsyn.2018.00017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
53 Matarazzo V, Muscatelli F. Natural breaking of the maternal silence at the mouse and human imprinted Prader-Willi locus: A whisper with functional consequences. Rare Dis 2013;1:e27228. [PMID: 25003016 DOI: 10.4161/rdis.27228] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
54 Miller JL, Strong TV, Heinemann J. Medication Trials for Hyperphagia and Food-Related Behaviors in Prader-Willi Syndrome. Diseases 2015;3:78-85. [PMID: 28943610 DOI: 10.3390/diseases3020078] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
55 Soeda S, Saito R, Fujita N, Fukuta K, Taniura H. Neuronal differentiation defects in induced pluripotent stem cells derived from a Prader-Willi syndrome patient. Neurosci Lett 2019;703:162-7. [PMID: 30902571 DOI: 10.1016/j.neulet.2019.03.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
56 Muscatelli F, Desarménien MG, Matarazzo V, Grinevich V. Oxytocin Signaling in the Early Life of Mammals: Link to Neurodevelopmental Disorders Associated with ASD. Curr Top Behav Neurosci 2018;35:239-68. [PMID: 28812269 DOI: 10.1007/7854_2017_16] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
57 Quattrocki E, Friston K. Autism, oxytocin and interoception. Neurosci Biobehav Rev 2014;47:410-30. [PMID: 25277283 DOI: 10.1016/j.neubiorev.2014.09.012] [Cited by in Crossref: 183] [Cited by in F6Publishing: 154] [Article Influence: 22.9] [Reference Citation Analysis]
58 Rodriguez JA, Bruggeman EC, Mani BK, Osborne-Lawrence S, Lord CC, Roseman HF, Viroslav HL, Vijayaraghavan P, Metzger NP, Gupta D, Shankar K, Pietra C, Liu C, Zigman JM. Ghrelin Receptor Agonist Rescues Excess Neonatal Mortality in a Prader-Willi Syndrome Mouse Model. Endocrinology 2018;159:4006-22. [PMID: 30380028 DOI: 10.1210/en.2018-00801] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
59 Yang X. Growth hormone treatment for Prader-Willi syndrome: A review. Neuropeptides 2020;83:102084. [PMID: 32859387 DOI: 10.1016/j.npep.2020.102084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
60 Saitoh S. Endosomal Recycling Defects and Neurodevelopmental Disorders. Cells 2022;11:148. [PMID: 35011709 DOI: 10.3390/cells11010148] [Reference Citation Analysis]
61 Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021;297:100959. [PMID: 34265304 DOI: 10.1016/j.jbc.2021.100959] [Reference Citation Analysis]
62 Melchior M, Juif PE, Gazzo G, Petit-Demoulière N, Chavant V, Lacaud A, Goumon Y, Charlet A, Lelièvre V, Poisbeau P. Pharmacological rescue of nociceptive hypersensitivity and oxytocin analgesia impairment in a rat model of neonatal maternal separation. Pain 2018;159:2630-40. [PMID: 30169420 DOI: 10.1097/j.pain.0000000000001375] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
63 Resnick JL, Nicholls RD, Wevrick R; Prader-Willi Syndrome Animal Models Working Group. Recommendations for the investigation of animal models of Prader-Willi syndrome. Mamm Genome 2013;24:165-78. [PMID: 23609791 DOI: 10.1007/s00335-013-9454-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
64 Stringer JM, Pask AJ, Shaw G, Renfree MB. Post-natal imprinting: evidence from marsupials. Heredity (Edinb) 2014;113:145-55. [PMID: 24595366 DOI: 10.1038/hdy.2014.10] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
65 Camerino C. The New Frontier in Oxytocin Physiology: The Oxytonic Contraction. Int J Mol Sci 2020;21:E5144. [PMID: 32708109 DOI: 10.3390/ijms21145144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Damen L, Grootjen LN, Juriaans AF, Donze SH, Huisman TM, Visser JA, Delhanty PJD, Hokken-Koelega ACS. Oxytocin in young children with Prader-Willi syndrome: Results of a randomized, double-blind, placebo-controlled, crossover trial investigating 3 months of oxytocin. Clin Endocrinol (Oxf) 2021;94:774-85. [PMID: 33296519 DOI: 10.1111/cen.14387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Grinevich V, Knobloch-Bollmann HS, Eliava M, Busnelli M, Chini B. Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol Psychiatry 2016;79:155-64. [PMID: 26001309 DOI: 10.1016/j.biopsych.2015.04.013] [Cited by in Crossref: 177] [Cited by in F6Publishing: 151] [Article Influence: 25.3] [Reference Citation Analysis]
68 Crespi BJ, Procyshyn TL. Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Neuroscience & Biobehavioral Reviews 2017;79:14-26. [DOI: 10.1016/j.neubiorev.2017.05.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
69 Buers I, Persico I, Schöning L, Nitschke Y, Di Rocco M, Loi A, Sahi PK, Utine GE, Bayraktar‐tanyeri B, Zampino G, Crisponi G, Rutsch F, Crisponi L. Crisponi/cold‐induced sweating syndrome: Differential diagnosis, pathogenesis and treatment concepts. Clin Genet 2019;97:209-21. [DOI: 10.1111/cge.13639] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
70 Millership SJ, Tunster SJ, Van de Pette M, Choudhury AI, Irvine EE, Christian M, Fisher AG, John RM, Scott J, Withers DJ. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol Metab 2018;18:97-106. [PMID: 30279096 DOI: 10.1016/j.molmet.2018.09.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
71 Meziane H, Schaller F, Bauer S, Villard C, Matarazzo V, Riet F, Guillon G, Lafitte D, Desarmenien MG, Tauber M, Muscatelli F. An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism. Biological Psychiatry 2015;78:85-94. [DOI: 10.1016/j.biopsych.2014.11.010] [Cited by in Crossref: 104] [Cited by in F6Publishing: 96] [Article Influence: 14.9] [Reference Citation Analysis]
72 Wevrick R. Disentangling ingestive behavior-related phenotypes in Prader–Willi syndrome: Integrating information from nonclinical studies and clinical trials to better understand the pathophysiology of hyperphagia and obesity. Physiology & Behavior 2020;219:112864. [DOI: 10.1016/j.physbeh.2020.112864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Morais LH, Golubeva AV, Casey S, Scott KA, Ramos Costa AP, Moloney GM, Dinan TG, Cryan JF. Early-life oxytocin attenuates the social deficits induced by caesarean-section delivery in the mouse. Neuropsychopharmacology 2021. [PMID: 34040156 DOI: 10.1038/s41386-021-01040-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
74 Wagner S, Harony-Nicolas H. Oxytocin and Animal Models for Autism Spectrum Disorder. Curr Top Behav Neurosci 2018;35:213-37. [PMID: 28864977 DOI: 10.1007/7854_2017_15] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
75 Da Prato LC, Zayan U, Abdallah D, Point V, Schaller F, Pallesi-Pocachard E, Montheil A, Canaan S, Gaiarsa JL, Muscatelli F, Matarazzo V. Early life oxytocin treatment improves thermo-sensory reactivity and maternal behavior in neonates lacking the autism-associated gene Magel2. Neuropsychopharmacology 2022. [PMID: 35396500 DOI: 10.1038/s41386-022-01313-5] [Reference Citation Analysis]
76 Hanin G, Ferguson-Smith AC. The evolution of genomic imprinting: Epigenetic control of mammary gland development and postnatal resource control. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1476. [PMID: 31877240 DOI: 10.1002/wsbm.1476] [Reference Citation Analysis]
77 Zhang HF, Dai YC, Wu J, Jia MX, Zhang JS, Shou XJ, Han SP, Zhang R, Han JS. Plasma Oxytocin and Arginine-Vasopressin Levels in Children with Autism Spectrum Disorder in China: Associations with Symptoms. Neurosci Bull 2016;32:423-32. [PMID: 27342432 DOI: 10.1007/s12264-016-0046-5] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 7.2] [Reference Citation Analysis]
78 Viaux-savelon S, Guedeney A, Deprez A. Infant Social Withdrawal Behavior: A Key for Adaptation in the Face of Relational Adversity. Front Psychol 2022;13:809309. [DOI: 10.3389/fpsyg.2022.809309] [Reference Citation Analysis]
79 Keverne EB. Importance of the matriline for genomic imprinting, brain development and behaviour. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110327. [PMID: 23166391 DOI: 10.1098/rstb.2011.0327] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
80 Edwards CA, Takahashi N, Corish JA, Ferguson-Smith AC. The origins of genomic imprinting in mammals. Reprod Fertil Dev 2019;31:1203-18. [PMID: 30615843 DOI: 10.1071/RD18176] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
81 Vidal C. The Sexed Brain: Between Science and Ideology. Neuroethics 2012;5:295-303. [DOI: 10.1007/s12152-011-9121-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
82 Colmers WF, Wevrick R. Leptin signaling defects in a mouse model of Prader-Willi syndrome: An orphan genetic obesity syndrome no more? Rare Dis 2013;1:e24421. [PMID: 25002992 DOI: 10.4161/rdis.24421] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
83 Vaidyanathan R, Hammock EA. Oxytocin receptor dynamics in the brain across development and species: OXT Receptor Dynamics in the Brain. Devel Neurobio 2017;77:143-57. [DOI: 10.1002/dneu.22403] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
84 Wang TS, Tsai WH, Tsai LP, Wong SB. Clinical characteristics and epilepsy in genomic imprinting disorders: Angelman syndrome and Prader-Willi syndrome. Ci Ji Yi Xue Za Zhi 2020;32:137-44. [PMID: 32269945 DOI: 10.4103/tcmj.tcmj_103_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
85 Stacher Hörndli CN, Wong E, Ferris E, Bennett K, Steinwand S, Rhodes AN, Fletcher PT, Gregg C. Complex Economic Behavior Patterns Are Constructed from Finite, Genetically Controlled Modules of Behavior. Cell Rep 2019;28:1814-1829.e6. [PMID: 31412249 DOI: 10.1016/j.celrep.2019.07.038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
86 Correa-da-Silva F, Fliers E, Swaab DF, Yi CX. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol 2021;33:e12994. [PMID: 34156126 DOI: 10.1111/jne.12994] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 van Karnebeek CD, Bowden K, Berry-Kravis E. Treatment of Neurogenetic Developmental Conditions: From 2016 into the Future. Pediatr Neurol 2016;65:1-13. [PMID: 27697313 DOI: 10.1016/j.pediatrneurol.2016.07.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
88 Thamban T, Agarwaal V, Khosla S. Role of genomic imprinting in mammalian development. J Biosci 2020;45. [DOI: 10.1007/s12038-019-9984-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
89 Grootjen LN, Uyl NEM, van Beijsterveldt IALP, Damen L, Kerkhof GF, Hokken-Koelega ACS. Prenatal and Neonatal Characteristics of Children with Prader-Willi Syndrome. J Clin Med 2022;11:679. [PMID: 35160130 DOI: 10.3390/jcm11030679] [Reference Citation Analysis]
90 Muscatelli F, Bouret SG. Wired for eating: how is an active feeding circuitry established in the postnatal brain? Curr Opin Neurobiol 2018;52:165-71. [PMID: 30032064 DOI: 10.1016/j.conb.2018.07.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
91 Fountain MD Jr, Schaaf CP. MAGEL2 and Oxytocin-Implications in Prader-Willi Syndrome and Beyond. Biol Psychiatry 2015;78:78-80. [PMID: 26092431 DOI: 10.1016/j.biopsych.2015.05.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
92 Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S. From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders. Front Neurosci 2015;9:497. [PMID: 26793046 DOI: 10.3389/fnins.2015.00497] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
93 Vrachnis N, Malamas FM, Sifakis S, Deligeoroglou E, Iliodromiti Z. The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. Int J Endocrinol. 2011;2011:350546. [PMID: 22190926 DOI: 10.1155/2011/350546] [Cited by in Crossref: 61] [Cited by in F6Publishing: 48] [Article Influence: 5.5] [Reference Citation Analysis]
94 Fountain MD, Schaaf CP. Prader-Willi Syndrome and Schaaf-Yang Syndrome: Neurodevelopmental Diseases Intersecting at the MAGEL2 Gene. Diseases 2016;4:E2. [PMID: 28933382 DOI: 10.3390/diseases4010002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
95 Marty V, Labialle S, Bortolin-cavaillé M, Ferreira De Medeiros G, Moisan M, Florian C, Cavaillé J. Deletion of the miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 locus enhances anxiety-related behaviour. Hum Mol Genet 2016;25:728-39. [DOI: 10.1093/hmg/ddv510] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
96 Borie AM, Muscatelli F, Desarménien MG, Jeanneteau F. [Vasopressin: An effective treatment for autism spectrum disorders?]. Med Sci (Paris) 2021;37:848-50. [PMID: 34647872 DOI: 10.1051/medsci/2021134] [Reference Citation Analysis]
97 Miller JL, Tamura R, Butler MG, Kimonis V, Sulsona C, Gold JA, Driscoll DJ. Oxytocin treatment in children with Prader-Willi syndrome: A double-blind, placebo-controlled, crossover study. Am J Med Genet A 2017;173:1243-50. [PMID: 28371242 DOI: 10.1002/ajmg.a.38160] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 9.4] [Reference Citation Analysis]
98 Miller TV, Caldwell HK. Oxytocin during Development: Possible Organizational Effects on Behavior. Front Endocrinol (Lausanne) 2015;6:76. [PMID: 26042087 DOI: 10.3389/fendo.2015.00076] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 6.6] [Reference Citation Analysis]
99 Salles J, Lacassagne E, Eddiry S, Franchitto N, Salles JP, Tauber M. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders? Mol Psychiatry 2021;26:51-9. [PMID: 33082508 DOI: 10.1038/s41380-020-00917-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
100 Monteiro C, Dourado M, Matos M, Duarte I, Lamas S, Galhardo V, Lima D. Critical care and survival of fragile animals: The case of Prrxl1 knockout mice. Applied Animal Behaviour Science 2014;158:86-94. [DOI: 10.1016/j.applanim.2014.06.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
101 Lee AK, Potts PR. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J Mol Biol 2017;429:1114-42. [PMID: 28300603 DOI: 10.1016/j.jmb.2017.03.005] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 11.8] [Reference Citation Analysis]
102 Kummerfeld DM, Raabe CA, Brosius J, Mo D, Skryabin BV, Rozhdestvensky TS. A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research. Int J Mol Sci 2021;22:3613. [PMID: 33807162 DOI: 10.3390/ijms22073613] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 2014;15:517-30. [PMID: 24958438 DOI: 10.1038/nrg3766] [Cited by in Crossref: 265] [Cited by in F6Publishing: 221] [Article Influence: 33.1] [Reference Citation Analysis]
104 Heseding HM, Jahn K, Eberlein CK, Wieting J, Maier HB, Proskynitopoulos PJ, Glahn A, Bleich S, Frieling H, Deest M. Distinct promoter regions of the oxytocin receptor gene are hypomethylated in Prader-Willi syndrome and in Prader-Willi syndrome associated psychosis. Transl Psychiatry 2022;12:246. [PMID: 35688807 DOI: 10.1038/s41398-022-02014-9] [Reference Citation Analysis]
105 Borie AM, Dromard Y, Guillon G, Olma A, Manning M, Muscatelli F, Desarménien MG, Jeanneteau F. Correction of vasopressin deficit in the lateral septum ameliorates social deficits of mouse autism model. J Clin Invest 2021;131:144450. [PMID: 33232306 DOI: 10.1172/JCI144450] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
106 Mercer RE, Michaelson SD, Chee MJ, Atallah TA, Wevrick R, Colmers WF. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS Genet 2013;9:e1003207. [PMID: 23341784 DOI: 10.1371/journal.pgen.1003207] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 5.0] [Reference Citation Analysis]
107 Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016;39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Cited by in Crossref: 52] [Cited by in F6Publishing: 38] [Article Influence: 8.7] [Reference Citation Analysis]
108 Vaidyanathan R, Schaller F, Muscatelli F, Hammock EAD. Colocalization of Oxtr with Prader-Willi syndrome transcripts in the trigeminal ganglion of neonatal mice. Hum Mol Genet 2020;29:2065-75. [PMID: 32420597 DOI: 10.1093/hmg/ddaa094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
109 Matarazzo V, Schaller F, Nédélec E, Benani A, Pénicaud L, Muscatelli F, Moyse E, Bauer S. Inactivation of Socs3 in the hypothalamus enhances the hindbrain response to endogenous satiety signals via oxytocin signaling. J Neurosci 2012;32:17097-107. [PMID: 23197703 DOI: 10.1523/JNEUROSCI.1669-12.2012] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
110 Lozovaya N, Nardou R, Tyzio R, Chiesa M, Pons-Bennaceur A, Eftekhari S, Bui TT, Billon-Grand M, Rasero J, Bonifazi P, Guimond D, Gaiarsa JL, Ferrari DC, Ben-Ari Y. Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth. Sci Rep 2019;9:9276. [PMID: 31239460 DOI: 10.1038/s41598-019-45635-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
111 Bertoni A, Schaller F, Tyzio R, Gaillard S, Santini F, Xolin M, Diabira D, Vaidyanathan R, Matarazzo V, Medina I, Hammock E, Zhang J, Chini B, Gaiarsa JL, Muscatelli F. Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Mol Psychiatry 2021;26:7582-95. [PMID: 34290367 DOI: 10.1038/s41380-021-01227-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
112 Welden JR, Zhang Z, Duncan MJ, Falaleeva M, Wells T, Stamm S. The posterior pituitary expresses the serotonin receptor 2C. Neurosci Lett 2018;684:132-9. [PMID: 29969651 DOI: 10.1016/j.neulet.2018.06.051] [Reference Citation Analysis]
113 Ivanova E, Kelsey G. Imprinted genes and hypothalamic function. J Mol Endocrinol 2011;47:R67-74. [PMID: 21798993 DOI: 10.1530/JME-11-0065] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
114 Pulix M, Plagge A. Imprinted Genes and Hypothalamic Function. In: Wray S, Blackshaw S, editors. Developmental Neuroendocrinology. Cham: Springer International Publishing; 2020. pp. 265-94. [DOI: 10.1007/978-3-030-40002-6_10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Grinevich V, Desarménien MG, Chini B, Tauber M, Muscatelli F. Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Front Neuroanat 2014;8:164. [PMID: 25767437 DOI: 10.3389/fnana.2014.00164] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
116 Tennese AA, Wevrick R. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice. Endocrinology 2011;152:967-78. [PMID: 21248145 DOI: 10.1210/en.2010-0709] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
117 Davies JR, Dent CL, Mcnamara GI, Isles AR. Behavioural effects of imprinted genes. Current Opinion in Behavioral Sciences 2015;2:28-33. [DOI: 10.1016/j.cobeha.2014.07.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
118 Frischknecht M, Bapst B, Seefried FR, Signer-Hasler H, Garrick D, Stricker C, Fries R, Russ I, Sölkner J, Bieber A, Strillacci MG, Gredler-Grandl B, Flury C; Intergenomics Consortium. Genome-wide association studies of fertility and calving traits in Brown Swiss cattle using imputed whole-genome sequences. BMC Genomics 2017;18:910. [PMID: 29178833 DOI: 10.1186/s12864-017-4308-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
119 Reichova A, Schaller F, Bukatova S, Bacova Z, Muscatelli F, Bakos J. The impact of oxytocin on neurite outgrowth and synaptic proteins in Magel2-deficient mice. Dev Neurobiol 2021;81:366-88. [PMID: 33609001 DOI: 10.1002/dneu.22815] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP, Karhson DS, Summers JE, Hinman KE, Motonaga KS, Phillips JM, Carson DS, Garner JP, Hardan AY. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci U S A 2017;114:8119-24. [PMID: 28696286 DOI: 10.1073/pnas.1705521114] [Cited by in Crossref: 125] [Cited by in F6Publishing: 112] [Article Influence: 25.0] [Reference Citation Analysis]
121 Salles J, Eddiry S, Lacassagne E, Laurier V, Molinas C, Bieth É, Franchitto N, Salles JP, Tauber M. Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory. Clin Epigenetics 2021;13:159. [PMID: 34389046 DOI: 10.1186/s13148-021-01143-0] [Reference Citation Analysis]
122 Kenkel WM, Yee JR, Carter CS. Is Oxytocin a Maternal-Foetal Signalling Molecule at Birth? Implications for Development. J Neuroendocrinol 2014;26:739-49. [DOI: 10.1111/jne.12186] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
123 Viaux-Savelon S, Rosenblum O, Guedeney A, Diene G, Çabal-Berthoumieu S, Fichaux-Bourin P, Molinas C, Faye S, Valette M, Bascoul C, Cohen D, Tauber M. Dyssynchrony and perinatal psychopathology impact of child disease on parents-child interactions, the paradigm of Prader Willi syndrom. J Physiol Paris 2016;110:427-33. [PMID: 28823614 DOI: 10.1016/j.jphysparis.2017.08.001] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
124 Sannino S, Chini B, Grinevich V. Lifespan oxytocin signaling: Maturation, flexibility, and stability in newborn, adolescent, and aged brain: Lifespan Oxytocin Signaling. Devel Neurobio 2017;77:158-68. [DOI: 10.1002/dneu.22450] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
125 Creeth H, Mcnamara G, Isles A, John R. Imprinted genes influencing the quality of maternal care. Frontiers in Neuroendocrinology 2019;53:100732. [DOI: 10.1016/j.yfrne.2018.12.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
126 Relkovic D, Isles AR. Behavioural and cognitive profiles of mouse models for Prader-Willi syndrome. Brain Res Bull 2013;92:41-8. [PMID: 21971015 DOI: 10.1016/j.brainresbull.2011.09.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]