BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koumangoye R, Bastarache L, Delpire E. NKCC1: Newly Found as a Human Disease-Causing Ion Transporter. Function (Oxf) 2021;2:zqaa028. [PMID: 33345190 DOI: 10.1093/function/zqaa028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Neumann C, Rosenbæk LL, Flygaard RK, Habeck M, Karlsen JL, Wang Y, Lindorff‐larsen K, Gad HH, Hartmann R, Lyons JA, Fenton RA, Nissen P. Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. The EMBO Journal 2022;41. [DOI: 10.15252/embj.2021110169] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Nakamura H, Tanaka T, Zheng C, Afione SA, Warner BM, Noguchi M, Atsumi T, Chiorini JA. Correction of LAMP3-associated salivary gland hypofunction by aquaporin gene therapy. Sci Rep 2022;12:18570. [PMID: 36329045 DOI: 10.1038/s41598-022-21374-2] [Reference Citation Analysis]
3 Moseng MA, Su C, Rios K, Cui M, Lyu M, Glaza P, Klenotic PA, Delpire E, Yu EW. Inhibition mechanism of NKCC1 involves the carboxyl terminus and long-range conformational coupling. Sci Adv 2022;8. [DOI: 10.1126/sciadv.abq0952] [Reference Citation Analysis]
4 Hartmann A, Nothwang HG. NKCC1 and KCC2: Structural insights into phospho-regulation. Front Mol Neurosci 2022;15:964488. [DOI: 10.3389/fnmol.2022.964488] [Reference Citation Analysis]
5 Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022;15:893111. [DOI: 10.3389/fnmol.2022.893111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang Z, Tan Q, Guo P, Huang S, Jia Z, Liu X, Feng H, Chen Y. NLRP3 inflammasome-mediated choroid plexus hypersecretion contributes to hydrocephalus after intraventricular hemorrhage via phosphorylated NKCC1 channels. J Neuroinflammation 2022;19:163. [PMID: 35729645 DOI: 10.1186/s12974-022-02530-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Szymanski J, Minichiello L. NKCC1 Deficiency in Forming Hippocampal Circuits Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling. Brain Sciences 2022;12:502. [DOI: 10.3390/brainsci12040502] [Reference Citation Analysis]
8 Smith TC, Vasilakos G, Shaffer SA, Puglise JM, Chou CH, Barton ER, Luna EJ. Novel γ-sarcoglycan interactors in murine muscle membranes. Skelet Muscle 2022;12:2. [PMID: 35065666 DOI: 10.1186/s13395-021-00285-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022;15:817013. [DOI: 10.3389/fncel.2021.817013] [Reference Citation Analysis]
10 Engels M, Kalia M, Rahmati S, Petersilie L, Kovermann P, van Putten MJAM, Rose CR, Meijer HGE, Gensch T, Fahlke C. Glial Chloride Homeostasis Under Transient Ischemic Stress. Front Cell Neurosci 2021;15:735300. [PMID: 34602981 DOI: 10.3389/fncel.2021.735300] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
11 Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021;101:1691-744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 28.0] [Reference Citation Analysis]
12 Nakamura H, Tanaka T, Pranzatelli T, Ji Y, Yin H, Perez P, Afione SA, Jang SI, Goldsmith C, Zheng CY, Swaim WD, Warner BM, Hirata N, Noguchi M, Atsumi T, Chiorini JA. Lysosome-associated membrane protein 3 misexpression in salivary glands induces a Sjögren's syndrome-like phenotype in mice. Ann Rheum Dis 2021:annrheumdis-2020-219649. [PMID: 33658234 DOI: 10.1136/annrheumdis-2020-219649] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
13 Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021;22:1232. [PMID: 33513812 DOI: 10.3390/ijms22031232] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
14 Delpire E. Advances in the development of novel compounds targeting cation-chloride cotransporter physiology. Am J Physiol Cell Physiol 2021;320:C324-40. [PMID: 33356948 DOI: 10.1152/ajpcell.00566.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]