BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McCabe CF, Padmanabhan V, Dolinoy DC, Domino SE, Jones TR, Bakulski KM, Goodrich JM. Maternal environmental exposure to bisphenols and epigenome-wide DNA methylation in infant cord blood. Environ Epigenet 2020;6:dvaa021. [PMID: 33391824 DOI: 10.1093/eep/dvaa021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 McCabe CF, Goodrich JM, Bakulski KM, Domino SE, Jones TR, Colacino J, Dolinoy DC, Padmanabhan V. Probing prenatal bisphenol exposures and tissue-specific DNA methylation responses in cord blood, cord tissue, and placenta. Reprod Toxicol 2023;115:74-84. [PMID: 36473650 DOI: 10.1016/j.reprotox.2022.11.005] [Reference Citation Analysis]
2 Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022;9:604-24. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Reference Citation Analysis]
3 Sol CM, Gaylord A, Santos S, Jaddoe VWV, Felix JF, Trasande L. Fetal exposure to phthalates and bisphenols and DNA methylation at birth: the Generation R Study. Clin Epigenetics 2022;14:125. [PMID: 36217170 DOI: 10.1186/s13148-022-01345-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Navarro-lafuente F, Adoamnei E, Arense-gonzalo JJ, Prieto-sánchez MT, Sánchez-ferrer ML, Parrado A, Fernández MF, Suarez B, López-acosta A, Sánchez-guillamón A, García-marcos L, Morales E, Mendiola J, Torres-cantero AM. Maternal urinary concentrations of bisphenol A during pregnancy are associated with global DNA methylation in cord blood of newborns in the “NELA” birth cohort. Science of The Total Environment 2022;838:156540. [DOI: 10.1016/j.scitotenv.2022.156540] [Reference Citation Analysis]
5 Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022;10:1689. [PMID: 35884994 DOI: 10.3390/biomedicines10071689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Midya V, Colicino E, Conti DV, Berhane K, Garcia E, Stratakis N, Andrusaityte S, Basagaña X, Casas M, Fossati S, Gražuleviciene R, Haug LS, Heude B, Maitre L, McEachan R, Papadopoulou E, Roumeliotaki T, Philippat C, Thomsen C, Urquiza J, Vafeiadi M, Varo N, Vos MB, Wright J, McConnell R, Vrijheid M, Chatzi L, Valvi D. Association of Prenatal Exposure to Endocrine-Disrupting Chemicals With Liver Injury in Children. JAMA Netw Open 2022;5:e2220176. [PMID: 35793087 DOI: 10.1001/jamanetworkopen.2022.20176] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
7 Mishra PK, Kumari R, Bhargava A, Bunkar N, Chauhan P, Tiwari R, Shandilya R, Srivastava RK, Singh RD. Prenatal exposure to environmental pro-oxidants induces mitochondria-mediated epigenetic changes: a cross-sectional pilot study. Environ Sci Pollut Res Int 2022. [PMID: 35633452 DOI: 10.1007/s11356-022-21059-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Petroff RL, Padmanabhan V, Dolinoy DC, Watkins DJ, Ciarelli J, Haggerty D, Ruden DM, Goodrich JM. Prenatal Exposures to Common Phthalates and Prevalent Phthalate Alternatives and Infant DNA Methylation at Birth. Front Genet 2022;13:793278. [DOI: 10.3389/fgene.2022.793278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D; APrON Study Team. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. Environ Int 2022;163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Christensen BC, Everson TM, Marsit CJ, Kelsey KT. Influence of Environmental Factors on the Epigenome. Epigenetic Epidemiology 2022. [DOI: 10.1007/978-3-030-94475-9_12] [Reference Citation Analysis]
11 Zhang P, Carlsten C, Chaleckis R, Hanhineva K, Huang M, Isobe T, Koistinen VM, Meister I, Papazian S, Sdougkou K, Xie H, Martin JW, Rappaport SM, Tsugawa H, Walker DI, Woodruff TJ, Wright RO, Wheelock CE. Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective. Environ Sci Technol Lett 2021;8:839-52. [PMID: 34660833 DOI: 10.1021/acs.estlett.1c00648] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
12 Cano R, Pérez JL, Dávila LA, Ortega Á, Gómez Y, Valero-Cedeño NJ, Parra H, Manzano A, Véliz Castro TI, Albornoz MPD, Cano G, Rojas-Quintero J, Chacín M, Bermúdez V. Role of Endocrine-Disrupting Chemicals in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Int J Mol Sci 2021;22:4807. [PMID: 34062716 DOI: 10.3390/ijms22094807] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]