BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease. Curr Dev Nutr 2020;4:nzaa166. [PMID: 33294766 DOI: 10.1093/cdn/nzaa166] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Ramli I, Posadino AM, Giordo R, Fenu G, Fardoun M, Iratni R, Eid AH, Zayed H, Pintus G. Effect of Resveratrol on Pregnancy, Prenatal Complications and Pregnancy-Associated Structure Alterations. Antioxidants (Basel) 2023;12. [PMID: 36829900 DOI: 10.3390/antiox12020341] [Reference Citation Analysis]
2 Mires S, Caputo M, Overton T, Skerritt C. Maternal micronutrient deficiency and congenital heart disease risk: A systematic review of observational studies. Birth Defects Res 2022;114:1079-91. [PMID: 35979646 DOI: 10.1002/bdr2.2072] [Reference Citation Analysis]
3 Sun J, Mao B, Wu Z, Jiao X, Wang Y, Lu Y, Ma X, Liu X, Xu X, Cui H, Lin X, Yi B, Qiu J, Liu Q. Relationship between maternal exposure to heavy metal titanium and offspring congenital heart defects in Lanzhou, China: A nested case-control study. Front Public Health 2022;10:946439. [DOI: 10.3389/fpubh.2022.946439] [Reference Citation Analysis]
4 Linglart L, Bonnet D. Epigenetics and Congenital Heart Diseases. J Cardiovasc Dev Dis 2022;9:185. [PMID: 35735814 DOI: 10.3390/jcdd9060185] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Bokor S, Vass RA, Funke S, Ertl T, Molnár D. Epigenetic Effect of Maternal Methyl-Group Donor Intake on Offspring’s Health and Disease. Life 2022;12:609. [DOI: 10.3390/life12050609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Luca AC, Miron IC, Mîndru DE, Curpăn AȘ, Stan RC, Țarcă E, Luca FA, Pădureț AI. Optimal Nutrition Parameters for Neonates and Infants with Congenital Heart Disease. Nutrients 2022;14:1671. [PMID: 35458233 DOI: 10.3390/nu14081671] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Alade A, Ismail W, Nair R, Schweizer M, Awotoye W, Oladayo A, Ryckman K, Butali A. Periconceptional use of vitamin A and the risk of giving birth to a child with nonsyndromic orofacial clefts-A meta-analysis. Birth Defects Res 2022. [PMID: 35357092 DOI: 10.1002/bdr2.2005] [Reference Citation Analysis]
8 Joshi RO, Kukshal P, Chellappan S, Guhathakurta S. "The study of expression levels of DNA methylation regulators in patients affected with congenital heart defects (CHDs)". Birth Defects Res 2022. [PMID: 35191222 DOI: 10.1002/bdr2.1988] [Reference Citation Analysis]
9 Cao J, Wu Q, Huang Y, Wang L, Su Z, Ye H. The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics 2021;13:93. [PMID: 33902696 DOI: 10.1186/s13148-021-01077-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
10 Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021;12:177. [PMID: 33712058 DOI: 10.1186/s13287-021-02252-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]