BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kantor S, Szabo L, Varga J, Cuesta M, Morton AJ. Progressive sleep and electroencephalogram changes in mice carrying the Huntington's disease mutation. Brain 2013;136:2147-58. [PMID: 23801737 DOI: 10.1093/brain/awt128] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Pouladi MA, Morton AJ, Hayden MR. Choosing an animal model for the study of Huntington's disease. Nat Rev Neurosci 2013;14:708-21. [DOI: 10.1038/nrn3570] [Cited by in Crossref: 205] [Cited by in F6Publishing: 189] [Article Influence: 22.8] [Reference Citation Analysis]
2 Ciamei A, Detloff PJ, Morton AJ. Progression of behavioural despair in R6/2 and Hdh knock-in mouse models recapitulates depression in Huntington's disease. Behavioural Brain Research 2015;291:140-6. [DOI: 10.1016/j.bbr.2015.05.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
3 Morton AJ. Large-Brained Animal Models of Huntington’s Disease: Sheep. In: Precious SV, Rosser AE, Dunnett SB, editors. Huntington’s Disease. New York: Springer; 2018. pp. 221-39. [DOI: 10.1007/978-1-4939-7825-0_12] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
4 Townhill J, Hughes AC, Thomas B, Busse ME, Price K, Dunnett SB, Hastings MH, Rosser AE. Using Actiwatch to monitor circadian rhythm disturbance in Huntington' disease: A cautionary note. J Neurosci Methods 2016;265:13-8. [PMID: 26774754 DOI: 10.1016/j.jneumeth.2016.01.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
5 Nassan M, Videnovic A. Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 2021. [PMID: 34759373 DOI: 10.1038/s41582-021-00577-7] [Reference Citation Analysis]
6 Piano C, Mazzucchi E, Bentivoglio AR, Losurdo A, Calandra Buonaura G, Imperatori C, Cortelli P, Della Marca G. Wake and Sleep EEG in Patients With Huntington Disease: An eLORETA Study and Review of the Literature. Clin EEG Neurosci 2017;48:60-71. [PMID: 27094758 DOI: 10.1177/1550059416632413] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
7 Martínez-Canabal A. Potential neuroprotective role of transforming growth factor β1 (TGFβ1) in the brain. Int J Neurosci 2015;125:1-9. [PMID: 24628581 DOI: 10.3109/00207454.2014.903947] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
8 Cambiaghi M, Magri L, Cursi M. Importance of EEG in validating the chronic effects of drugs: suggestions from animal models of epilepsy treated with rapamycin. Seizure 2015;27:30-9. [PMID: 25891924 DOI: 10.1016/j.seizure.2015.02.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
9 van Wamelen DJ, Aziz NA. Hypothalamic pathology in Huntington disease. Handb Clin Neurol 2021;182:245-55. [PMID: 34266596 DOI: 10.1016/B978-0-12-819973-2.00017-4] [Reference Citation Analysis]
10 Vas S, Nicol AU, Kalmar L, Miles J, Morton AJ. Abnormal patterns of sleep and EEG power distribution during non-rapid eye movement sleep in the sheep model of Huntington's disease. Neurobiol Dis 2021;155:105367. [PMID: 33848636 DOI: 10.1016/j.nbd.2021.105367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Estrada-Sánchez AM, Blake CL, Barton SJ, Howe AG, Rebec GV. Lack of mutant huntingtin in cortical efferents improves behavioral inflexibility and corticostriatal dynamics in Huntington's disease mice. J Neurophysiol 2019;122:2621-9. [PMID: 31693428 DOI: 10.1152/jn.00777.2018] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
12 Callahan JW, Abercrombie ED. Relationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease. J Physiol 2015;593:3727-38. [PMID: 25952461 DOI: 10.1113/JP270268] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
13 Chan F, Lax NZ, Davies CH, Turnbull DM, Cunningham MO. Neuronal oscillations: A physiological correlate for targeting mitochondrial dysfunction in neurodegenerative diseases? Neuropharmacology 2016;102:48-58. [DOI: 10.1016/j.neuropharm.2015.10.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
14 Kudo T, Loh DH, Tahara Y, Truong D, Hernández-Echeagaray E, Colwell CS. Circadian dysfunction in response to in vivo treatment with the mitochondrial toxin 3-nitropropionic acid. ASN Neuro 2014;6:e00133. [PMID: 24328694 DOI: 10.1042/AN20130042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
15 Leuchter AF, Hunter AM, Krantz DE, Cook IA. Intermediate phenotypes and biomarkers of treatment outcome in major depressive disorder. Dialogues Clin Neurosci 2014;16:525-37. [PMID: 25733956 [PMID: 25733956 DOI: 10.31887/dcns.2014.16.4/aleuchter] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
16 Smarr B, Cutler T, Loh DH, Kudo T, Kuljis D, Kriegsfeld L, Ghiani CA, Colwell CS. Circadian dysfunction in the Q175 model of Huntington's disease: Network analysis. J Neurosci Res 2019;97:1606-23. [PMID: 31359503 DOI: 10.1002/jnr.24505] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
17 Whittaker DS, Loh DH, Wang HB, Tahara Y, Kuljis D, Cutler T, Ghiani CA, Shibata S, Block GD, Colwell CS. Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. J Biol Rhythms 2018;33:535-54. [PMID: 30084274 DOI: 10.1177/0748730418790401] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
18 Kalliolia E, Silajdžić E, Nambron R, Hill NR, Doshi A, Frost C, Watt H, Hindmarsh P, Björkqvist M, Warner TT. Plasma melatonin is reduced in Huntington's disease. Mov Disord 2014;29:1511-5. [PMID: 25164424 DOI: 10.1002/mds.26003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 6.8] [Reference Citation Analysis]
19 Ouk K, Aungier J, Morton AJ. Prolonged day length exposure improves circadian deficits and survival in a transgenic mouse model of Huntington's disease. Neurobiol Sleep Circadian Rhythms 2017;2:27-38. [PMID: 31236493 DOI: 10.1016/j.nbscr.2016.11.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
20 Angelakos CC, Watson AJ, O'Brien WT, Krainock KS, Nickl-Jockschat T, Abel T. Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism. Autism Res 2017;10:572-84. [PMID: 27739237 DOI: 10.1002/aur.1707] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
21 Gonzales ED, Tanenhaus AK, Zhang J, Chaffee RP, Yin JC. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling. Hum Mol Genet 2016;25:837-52. [PMID: 26604145 DOI: 10.1093/hmg/ddv482] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
22 Bertoglio D, Kosten L, Verhaeghe J, Thomae D, Wyffels L, Stroobants S, Wityak J, Dominguez C, Mrzljak L, Staelens S. Longitudinal Characterization of mGluR5 Using 11 C-ABP688 PET Imaging in the Q175 Mouse Model of Huntington Disease. J Nucl Med 2018;59:1722-7. [DOI: 10.2967/jnumed.118.210658] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
23 Jeantet Y, Cayzac S, Cho YH. β oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington's disease. PLoS One 2013;8:e79509. [PMID: 24244517 DOI: 10.1371/journal.pone.0079509] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
24 Cuesta M, Aungier J, Morton AJ. Behavioral therapy reverses circadian deficits in a transgenic mouse model of Huntington's disease. Neurobiol Dis 2014;63:85-91. [PMID: 24269914 DOI: 10.1016/j.nbd.2013.11.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
25 Garret M, Du Z, Chazalon M, Cho YH, Baufreton J. Alteration of GABAergic neurotransmission in Huntington's disease. CNS Neurosci Ther 2018;24:292-300. [PMID: 29464851 DOI: 10.1111/cns.12826] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
26 Lazar AS, Panin F, Goodman AO, Lazic SE, Lazar ZI, Mason SL, Rogers L, Murgatroyd PR, Watson LP, Singh P, Borowsky B, Shneerson JM, Barker RA. Sleep deficits but no metabolic deficits in premanifest Huntington's disease. Ann Neurol 2015;78:630-48. [PMID: 26224419 DOI: 10.1002/ana.24495] [Cited by in Crossref: 65] [Cited by in F6Publishing: 55] [Article Influence: 9.3] [Reference Citation Analysis]
27 Fisher SP, Schwartz MD, Wurts-Black S, Thomas AM, Chen TM, Miller MA, Palmerston JB, Kilduff TS, Morairty SR. Quantitative Electroencephalographic Analysis Provides an Early-Stage Indicator of Disease Onset and Progression in the zQ175 Knock-In Mouse Model of Huntington's Disease. Sleep 2016;39:379-91. [PMID: 26446107 DOI: 10.5665/sleep.5448] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
28 Kantor S, Varga J, Morton AJ. A single dose of hypnotic corrects sleep and EEG abnormalities in symptomatic Huntington's disease mice. Neuropharmacology 2016;105:298-307. [PMID: 26805423 DOI: 10.1016/j.neuropharm.2016.01.027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
29 Leuchter MK, Donzis EJ, Cepeda C, Hunter AM, Estrada-Sánchez AM, Cook IA, Levine MS, Leuchter AF. Quantitative Electroencephalographic Biomarkers in Preclinical and Human Studies of Huntington's Disease: Are They Fit-for-Purpose for Treatment Development? Front Neurol 2017;8:91. [PMID: 28424652 DOI: 10.3389/fneur.2017.00091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
30 Ouk K, Aungier J, Cuesta M, Morton AJ. Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington's disease. Neuropharmacology 2018;131:337-50. [PMID: 29274752 DOI: 10.1016/j.neuropharm.2017.12.033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
31 Ouk K, Hughes S, Pothecary CA, Peirson SN, Morton AJ. Attenuated pupillary light responses and downregulation of opsin expression parallel decline in circadian disruption in two different mouse models of Huntington's disease. Hum Mol Genet 2016;25:ddw359. [PMID: 28031289 DOI: 10.1093/hmg/ddw359] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
32 Xu F, Kula-Eversole E, Iwanaszko M, Lim C, Allada R. Ataxin2 functions via CrebA to mediate Huntingtin toxicity in circadian clock neurons. PLoS Genet 2019;15:e1008356. [PMID: 31593562 DOI: 10.1371/journal.pgen.1008356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
33 van Wamelen DJ, Roos RA, Aziz NA. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener Dis Manag 2015;5:549-59. [PMID: 26621387 DOI: 10.2217/nmt.15.45] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
34 Voysey Z, Fazal SV, Lazar AS, Barker RA. The sleep and circadian problems of Huntington's disease: when, why and their importance. J Neurol 2021;268:2275-83. [PMID: 33355880 DOI: 10.1007/s00415-020-10334-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Lebreton F, Cayzac S, Pietropaolo S, Jeantet Y, Cho YH. Sleep Physiology Alterations Precede Plethoric Phenotypic Changes in R6/1 Huntington's Disease Mice. PLoS One 2015;10:e0126972. [PMID: 25966356 DOI: 10.1371/journal.pone.0126972] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
36 McDowell KA, Shin D, Roos KP, Chesselet MF. Sleep dysfunction and EEG alterations in mice overexpressing alpha-synuclein. J Parkinsons Dis 2014;4:531-9. [PMID: 24867919 DOI: 10.3233/JPD-140374] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
37 Ouk K, Aungier J, Morton AJ. Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington's disease. Exp Neurol 2016;286:69-82. [PMID: 27646506 DOI: 10.1016/j.expneurol.2016.09.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
38 Nagy D, Tingley FD, Stoiljkovic M, Hajós M. Application of neurophysiological biomarkers for Huntington's disease: Evaluating a phosphodiesterase 9A inhibitor. Experimental Neurology 2015;263:122-31. [DOI: 10.1016/j.expneurol.2014.10.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
39 Vas S, Casey JM, Schneider WT, Kalmar L, Morton AJ. Wake-Promoting and EEG Spectral Effects of Modafinil After Acute or Chronic Administration in the R6/2 Mouse Model of Huntington's Disease. Neurotherapeutics 2020;17:1075-86. [PMID: 32297185 DOI: 10.1007/s13311-020-00849-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Kantor S, Varga J, Kulkarni S, Morton AJ. Chronic Paroxetine Treatment Prevents the Emergence of Abnormal Electroencephalogram Oscillations in Huntington's Disease Mice. Neurotherapeutics 2017;14:1120-33. [PMID: 28653279 DOI: 10.1007/s13311-017-0546-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
41 Du Z, Chazalon M, Bestaven E, Leste-Lasserre T, Baufreton J, Cazalets JR, Cho YH, Garret M. Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington's disease. Neuroscience 2016;329:363-79. [PMID: 27217211 DOI: 10.1016/j.neuroscience.2016.05.027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
42 Bartlett DM, Domínguez D JF, Reyes A, Zaenker P, Feindel KW, Newton RU, Hannan AJ, Slater JA, Eastwood PR, Lazar AS, Ziman M, Cruickshank T. Investigating the relationships between hypothalamic volume and measures of circadian rhythm and habitual sleep in premanifest Huntington's disease. Neurobiol Sleep Circadian Rhythms 2019;6:1-8. [PMID: 31236517 DOI: 10.1016/j.nbscr.2018.07.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
43 Videnovic A, Lazar AS, Barker RA, Overeem S. 'The clocks that time us'--circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 2014;10:683-93. [PMID: 25385339 DOI: 10.1038/nrneurol.2014.206] [Cited by in Crossref: 175] [Cited by in F6Publishing: 164] [Article Influence: 21.9] [Reference Citation Analysis]
44 Shobe JL, Donzis EJ, Lee K, Chopra S, Masmanidis SC, Cepeda C, Levine MS. Early impairment of thalamocortical circuit activity and coherence in a mouse model of Huntington's disease. Neurobiol Dis 2021;157:105447. [PMID: 34274461 DOI: 10.1016/j.nbd.2021.105447] [Reference Citation Analysis]
45 Cabanas M, Pistono C, Puygrenier L, Rakesh D, Jeantet Y, Garret M, Cho YH. Neurophysiological and Behavioral Effects of Anti-Orexinergic Treatments in a Mouse Model of Huntington's Disease. Neurotherapeutics 2019;16:784-96. [PMID: 30915710 DOI: 10.1007/s13311-019-00726-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]