BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ning Z, Pan W, Chen Y, Xiao Q, Zhang X, Luo J, Wang J, Zhang Y, Schwartz R. Integrative analysis of cross-modal features for the prognosis prediction of clear cell renal cell carcinoma. Bioinformatics 2020;36:2888-95. [DOI: 10.1093/bioinformatics/btaa056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Tan K, Huang W, Liu X, Hu J, Dong S. A multi-modal fusion framework based on multi-task correlation learning for cancer prognosis prediction. Artificial Intelligence in Medicine 2022;126:102260. [DOI: 10.1016/j.artmed.2022.102260] [Reference Citation Analysis]
2 Schulz S, Woerl AC, Jungmann F, Glasner C, Stenzel P, Strobl S, Fernandez A, Wagner DC, Haferkamp A, Mildenberger P, Roth W, Foersch S. Multimodal Deep Learning for Prognosis Prediction in Renal Cancer. Front Oncol 2021;11:788740. [PMID: 34900744 DOI: 10.3389/fonc.2021.788740] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Brief Bioinform 2022:bbab569. [PMID: 35089332 DOI: 10.1093/bib/bbab569] [Reference Citation Analysis]
4 Wang Z, Li R, Wang M, Li A. GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction. Bioinformatics 2021:btab185. [PMID: 33734318 DOI: 10.1093/bioinformatics/btab185] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Schneider L, Laiouar-Pedari S, Kuntz S, Krieghoff-Henning E, Hekler A, Kather JN, Gaiser T, Fröhling S, Brinker TJ. Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur J Cancer 2022;160:80-91. [PMID: 34810047 DOI: 10.1016/j.ejca.2021.10.007] [Reference Citation Analysis]
6 Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using deep learning. Brief Bioinform 2021:bbab454. [PMID: 34791014 DOI: 10.1093/bib/bbab454] [Reference Citation Analysis]
7 He Y, Chen H, Sun H, Ji J, Shi Y, Zhang X, Liu L. High-dimensional integrative copula discriminant analysis for multiomics data. Stat Med 2020;39:4869-84. [PMID: 33617001 DOI: 10.1002/sim.8758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Huang X, Chen H, Yan JD. Study on structured method of Chinese MRI report of nasopharyngeal carcinoma. BMC Med Inform Decis Mak 2021;21:203. [PMID: 34330269 DOI: 10.1186/s12911-021-01547-1] [Reference Citation Analysis]
9 Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 2021;13:152. [PMID: 34579788 DOI: 10.1186/s13073-021-00968-x] [Reference Citation Analysis]
10 Byun SS, Heo TS, Choi JM, Jeong YS, Kim YS, Lee WK, Kim C. Deep learning based prediction of prognosis in nonmetastatic clear cell renal cell carcinoma. Sci Rep 2021;11:1242. [PMID: 33441830 DOI: 10.1038/s41598-020-80262-9] [Reference Citation Analysis]