BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chiu YC, Chen HH, Gorthi A, Mostavi M, Zheng S, Huang Y, Chen Y. Deep learning of pharmacogenomics resources: moving towards precision oncology. Brief Bioinform 2020;21:2066-83. [PMID: 31813953 DOI: 10.1093/bib/bbz144] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu F, Pan Q, Wang L, Yi S, Liu P, Huang W. Anticancer targets and mechanisms of calycosin to treat nasopharyngeal carcinoma. BioFactors 2020;46:675-84. [DOI: 10.1002/biof.1639] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
2 Rafique R, Islam SMR, Kazi JU. Machine learning in the prediction of cancer therapy. Comput Struct Biotechnol J 2021;19:4003-17. [PMID: 34377366 DOI: 10.1016/j.csbj.2021.07.003] [Reference Citation Analysis]
3 Thirunavukkarasu MK, Shin WH, Karuppasamy R. Exploring safe and potent bioactives for the treatment of non-small cell lung cancer. 3 Biotech 2021;11:241. [PMID: 33968584 DOI: 10.1007/s13205-021-02797-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Feng F, Shen B, Mou X, Li Y, Li H. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine. J Genet Genomics 2021:S1673-8527(21)00084-9. [PMID: 34023295 DOI: 10.1016/j.jgg.2021.03.007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Jiang L, Jiang C, Yu X, Fu R, Jin S, Liu X. DeepTTA: a transformer-based model for predicting cancer drug response. Brief Bioinform 2022:bbac100. [PMID: 35348595 DOI: 10.1093/bib/bbac100] [Reference Citation Analysis]
6 Mostavi M, Chiu YC, Huang Y, Chen Y. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med Genomics 2020;13:44. [PMID: 32241303 DOI: 10.1186/s12920-020-0677-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
7 Glessner JT, Hou X, Zhong C, Zhang J, Khan M, Brand F, Krawitz P, Sleiman PMA, Hakonarson H, Wei Z. DeepCNV: a deep learning approach for authenticating copy number variations. Brief Bioinform 2021:bbaa381. [PMID: 33429424 DOI: 10.1093/bib/bbaa381] [Reference Citation Analysis]
8 Bazgir O, Ghosh S, Pal R. Investigation of REFINED CNN ensemble learning for anti-cancer drug sensitivity prediction. Bioinformatics 2021;37:i42-50. [PMID: 34252971 DOI: 10.1093/bioinformatics/btab336] [Reference Citation Analysis]
9 Mostavi M, Chiu YC, Chen Y, Huang Y. CancerSiamese: one-shot learning for predicting primary and metastatic tumor types unseen during model training. BMC Bioinformatics 2021;22:244. [PMID: 33980137 DOI: 10.1186/s12859-021-04157-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 2021;13:152. [PMID: 34579788 DOI: 10.1186/s13073-021-00968-x] [Reference Citation Analysis]
11 [DOI: 10.1101/2020.09.07.286583] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Nguyen LC, Naulaerts S, Bruna A, Ghislat G, Ballester PJ. Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles. Biomedicines 2021;9:1319. [PMID: 34680436 DOI: 10.3390/biomedicines9101319] [Reference Citation Analysis]
13 Mavridou D, Psatha K, Aivaliotis M. Proteomics and Drug Repurposing in CLL towards Precision Medicine. Cancers (Basel) 2021;13:3391. [PMID: 34298607 DOI: 10.3390/cancers13143391] [Reference Citation Analysis]
14 Shenoy S. Cell plasticity in cancer: A complex interplay of genetic, epigenetic mechanisms and tumor micro-environment. Surg Oncol 2020;34:154-62. [PMID: 32891322 DOI: 10.1016/j.suronc.2020.04.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Manyazewal T, Woldeamanuel Y, Blumberg HM, Fekadu A, Marconi VC. The potential use of digital health technologies in the African context: a systematic review of evidence from Ethiopia. NPJ Digit Med 2021;4:125. [PMID: 34404895 DOI: 10.1038/s41746-021-00487-4] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]