BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fu J, Zhang Y, Liu J, Lian X, Tang J, Zhu F. Pharmacometabonomics: data processing and statistical analysis. Brief Bioinform 2021:bbab138. [PMID: 33866355 DOI: 10.1093/bib/bbab138] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Yagin FH, Cicek İB, Alkhateeb A, Yagin B, Colak C, Azzeh M, Akbulut S. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Comput Biol Med 2023;154:106619. [PMID: 36738712 DOI: 10.1016/j.compbiomed.2023.106619] [Reference Citation Analysis]
2 Nalepa J, Kotowski K, Machura B, Adamski S, Bozek O, Eksner B, Kokoszka B, Pekala T, Radom M, Strzelczak M, Zarudzki L, Krason A, Arcadu F, Tessier J. Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients. Comput Biol Med 2023;154:106603. [PMID: 36738710 DOI: 10.1016/j.compbiomed.2023.106603] [Reference Citation Analysis]
3 Wang T, Sun J, Zhao Q. Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism. Comput Biol Med 2023;153:106464. [PMID: 36584603 DOI: 10.1016/j.compbiomed.2022.106464] [Reference Citation Analysis]
4 Moon S, Kim HJ, Lee Y, Lee YJ, Jung S, Lee JS, Hahn SH, Kim K, Roh JY, Nam S. Oncogenic signaling pathways and hallmarks of cancer in Korean patients with acral melanoma. Comput Biol Med 2023;154:106602. [PMID: 36716688 DOI: 10.1016/j.compbiomed.2023.106602] [Reference Citation Analysis]
5 Zhang J, Jiang H, Shi T. ASE-Net: A tumor segmentation method based on image pseudo enhancement and adaptive-scale attention supervision module. Comput Biol Med 2023;152:106363. [PMID: 36516579 DOI: 10.1016/j.compbiomed.2022.106363] [Reference Citation Analysis]
6 Huang P, Yan L, Li Z, Zhao S, Feng Y, Zeng J, Chen L, Huang A, Chen Y, Lei S, Huang X, Deng Y, Xie D, Guan H, Peng W, Yu L, Chen B. Potential shared gene signatures and molecular mechanisms between atherosclerosis and depression: Evidence from transcriptome data. Comput Biol Med 2023;152:106450. [PMID: 36565484 DOI: 10.1016/j.compbiomed.2022.106450] [Reference Citation Analysis]
7 Xiang J, Wang X, Wang X, Zhang J, Yang S, Yang W, Han X, Liu Y. Automatic diagnosis and grading of Prostate Cancer with weakly supervised learning on whole slide images. Comput Biol Med 2023;152:106340. [PMID: 36481762 DOI: 10.1016/j.compbiomed.2022.106340] [Reference Citation Analysis]
8 Falchetti M, Delgobo M, Zancanaro H, Almeida K, das Neves RN, Dos Santos B, Stefanes NM, Bishop A, Santos-Silva MC, Zanotto-Filho A. Omics-based identification of an NRF2-related auranofin resistance signature in cancer: Insights into drug repurposing. Comput Biol Med 2023;152:106347. [PMID: 36493734 DOI: 10.1016/j.compbiomed.2022.106347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu C, Zhou Y, Zhou Y, Tang X, Tang L, Wang J. Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning. Comput Biol Med 2023;152:106388. [PMID: 36470144 DOI: 10.1016/j.compbiomed.2022.106388] [Reference Citation Analysis]
10 Yue ZX, Yan TC, Xu HQ, Liu YH, Hong YF, Chen GX, Xie T, Tao L. A systematic review on the state-of-the-art strategies for protein representation. Comput Biol Med 2023;152:106440. [PMID: 36543002 DOI: 10.1016/j.compbiomed.2022.106440] [Reference Citation Analysis]
11 Li Q, Wu J, Zhu M, Tang Y, Jin L, Chen Y, Jin M, Peng Z. A novel risk signature based on autophagy-related genes to evaluate tumor immune microenvironment and predict prognosis in hepatocellular carcinoma. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106437] [Reference Citation Analysis]
12 Tang H, Sun L, Huang J, Yang Z, Li C, Zhou X. The mechanism and biomarker function of Cavin-2 in lung ischemia-reperfusion injury. Comput Biol Med 2022;151:106234. [PMID: 36335812 DOI: 10.1016/j.compbiomed.2022.106234] [Reference Citation Analysis]
13 Yang Q, Li B, Wang P, Xie J, Feng Y, Liu Z, Zhu F. LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data. Brief Bioinform 2022;23:bbac455. [PMID: 36274234 DOI: 10.1093/bib/bbac455] [Reference Citation Analysis]
14 Sun X, Zhang Y, Li H, Zhou Y, Shi S, Chen Z, He X, Zhang H, Li F, Yin J, Mou M, Wang Y, Qiu Y, Zhu F. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res 2023;51:D1263-75. [PMID: 36243960 DOI: 10.1093/nar/gkac812] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li F, Yin J, Lu M, Mou M, Li Z, Zeng Z, Tan Y, Wang S, Chu X, Dai H, Hou T, Zeng S, Chen Y, Zhu F. DrugMAP: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2023;51:D1288-99. [PMID: 36243961 DOI: 10.1093/nar/gkac813] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Beura S, Kundu P, Das AK, Ghosh A. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Computers in Biology and Medicine 2022;149:105997. [DOI: 10.1016/j.compbiomed.2022.105997] [Reference Citation Analysis]
17 Rong Z, Liu Z, Song J, Cao L, Yu Y, Qiu M, Hou Y. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Comput Biol Med 2022;150:106085. [PMID: 36162197 DOI: 10.1016/j.compbiomed.2022.106085] [Reference Citation Analysis]
18 Zhou K, Cai C, He Y, Chen Z. Potential prognostic biomarkers of sudden cardiac death discovered by machine learning. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106154] [Reference Citation Analysis]
19 Fu Z, Liu W, Huang C, Mei T. A Review of Performance Prediction Based on Machine Learning in Materials Science. Nanomaterials 2022;12:2957. [DOI: 10.3390/nano12172957] [Reference Citation Analysis]
20 Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022;148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Nosrati V, Rahmani M. An ensemble framework for microarray data classification based on feature subspace partitioning. Comput Biol Med 2022;148:105820. [PMID: 35872409 DOI: 10.1016/j.compbiomed.2022.105820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 de Fátima Cobre A, Surek M, Stremel DP, Fachi MM, Lobo Borba HH, Tonin FS, Pontarolo R. Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning. Comput Biol Med 2022;146:105659. [PMID: 35751188 DOI: 10.1016/j.compbiomed.2022.105659] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Li F, Yin J, Lu M, Yang Q, Zeng Z, Zhang B, Li Z, Qiu Y, Dai H, Chen Y, Zhu F. ConSIG: consistent discovery of molecular signature from OMIC data. Brief Bioinform 2022:bbac253. [PMID: 35758241 DOI: 10.1093/bib/bbac253] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
24 Tee KB, Ibrahim L, Hashim NM, Saiman MZ, Zakaria ZH, Huri HZ. Pharmacokinetic-Pharmacometabolomic Approach in Early-Phase Clinical Trials: A Way Forward for Targeted Therapy in Type 2 Diabetes. Pharmaceutics 2022;14:1268. [PMID: 35745841 DOI: 10.3390/pharmaceutics14061268] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhang C, Mou M, Zhou Y, Zhang W, Lian X, Shi S, Lu M, Sun H, Li F, Wang Y, Zeng Z, Li Z, Zhang B, Qiu Y, Zhu F, Gao J. Biological activities of drug inactive ingredients. Brief Bioinform 2022:bbac160. [PMID: 35524477 DOI: 10.1093/bib/bbac160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022;145:105465. [PMID: 35366467 DOI: 10.1016/j.compbiomed.2022.105465] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
27 Wang Y, Zhu C, Wang Y, Sun J, Ling D, Wang L. Survival risk prediction model for ESCC based on relief feature selection and CNN. Comput Biol Med 2022;145:105460. [PMID: 35364307 DOI: 10.1016/j.compbiomed.2022.105460] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Zheng Z, Li Y, Lu X, Zhang J, Liu Q, Zhou D, Deng X, Qiu Y, Chen Q, Zheng H, Dai J. A novel mTOR-associated gene signature for predicting prognosis and evaluating tumor immune microenvironment in lung adenocarcinoma. Comput Biol Med 2022;145:105394. [PMID: 35325730 DOI: 10.1016/j.compbiomed.2022.105394] [Reference Citation Analysis]
29 Li F, Zhou Y, Zhang Y, Yin J, Qiu Y, Gao J, Zhu F. POSREG: proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability. Brief Bioinform 2022:bbac040. [PMID: 35183059 DOI: 10.1093/bib/bbac040] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 25.0] [Reference Citation Analysis]
30 Xue W, Fu T, Deng S, Yang F, Yang J, Zhu F. Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram. ACS Chem Neurosci 2022;13:340-51. [PMID: 35041375 DOI: 10.1021/acschemneuro.1c00694] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 33.0] [Reference Citation Analysis]
31 Chen Y, Wang Y, Ding Y, Su X, Wang C. RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105322] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]