BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang S, Amahong K, Sun X, Lian X, Liu J, Sun H, Lou Y, Zhu F, Qiu Y. The miRNA: a small but powerful RNA for COVID-19. Brief Bioinform 2021;22:1137-49. [PMID: 33675361 DOI: 10.1093/bib/bbab062] [Cited by in Crossref: 54] [Cited by in F6Publishing: 60] [Article Influence: 54.0] [Reference Citation Analysis]
Number Citing Articles
1 Periwal N, Bhardwaj U, Sarma S, Arora P, Sood V. In silico analysis of SARS-CoV-2 genomes: Insights from SARS encoded non-coding RNAs. Front Cell Infect Microbiol 2022;12. [DOI: 10.3389/fcimb.2022.966870] [Reference Citation Analysis]
2 Hassam M, Bashir MA, Shafi S, Zahra N, Khan K, Jalal K, Siddiqui H, Uddin R. Identification of potent compounds against SARs-CoV-2: An in-silico based drug searching against Mpro. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106284] [Reference Citation Analysis]
3 Cao B, Li R, Xiao S, Deng S, Zhou X, Zhou L. Predicting miRNA-disease association through combining miRNA function and network topological similarities based on MINE. iScience 2022;25:105299. [DOI: 10.1016/j.isci.2022.105299] [Reference Citation Analysis]
4 Zhang Y, Yang J, Liu P, Zhang R, Li J, Bi Y, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacological Research 2022;185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Reference Citation Analysis]
5 Yang Q, Li B, Wang P, Xie J, Feng Y, Liu Z, Zhu F. LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data. Briefings in Bioinformatics 2022. [DOI: 10.1093/bib/bbac455] [Reference Citation Analysis]
6 Hajji H, Alaqarbeh M, Lakhlifi T, Ajana MA, Alsakhen N, Bouachrine M. Computational approach investigation bioactive molecules from Saussurea Costus plant as SARS-CoV-2 main protease inhibitors using reverse docking, molecular dynamics simulation, and pharmacokinetic ADMET parameters. Comput Biol Med 2022;150:106209. [PMID: 36257276 DOI: 10.1016/j.compbiomed.2022.106209] [Reference Citation Analysis]
7 Amahong K, Zhang W, Zhou Y, Zhang S, Yin J, Li F, Xu H, Yan T, Yue Z, Liu Y, Hou T, Qiu Y, Tao L, Han L, Zhu F. CovInter: interaction data between coronavirus RNAs and host proteins. Nucleic Acids Res 2022:gkac834. [PMID: 36200814 DOI: 10.1093/nar/gkac834] [Reference Citation Analysis]
8 Liu S, Chen L, Zhang Y, Zhou Y, He Y, Chen Z, Qi S, Zhu J, Chen X, Zhang H, Luo Y, Qiu Y, Tao L, Zhu F. M6AREG: m6A-centered regulation of disease development and drug response. Nucleic Acids Res 2022:gkac801. [PMID: 36134713 DOI: 10.1093/nar/gkac801] [Reference Citation Analysis]
9 Liao T, Wu H, Liao M, Hu W, Tsai K, Lin C, Lu K. The Perspective of Vitamin D on suPAR-Related AKI in COVID-19. IJMS 2022;23:10725. [DOI: 10.3390/ijms231810725] [Reference Citation Analysis]
10 Kanapeckaitė A, Mažeikienė A, Geris L, Burokienė N, Cottrell GS, Widera D. Computational pharmacology: New avenues for COVID-19 therapeutics search and better preparedness for future pandemic crises. Biophys Chem 2022;290:106891. [PMID: 36137310 DOI: 10.1016/j.bpc.2022.106891] [Reference Citation Analysis]
11 Manish M, Mishra S, Anand A, Subbarao N. Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106125] [Reference Citation Analysis]
12 More-adate P, Lokhande KB, Swamy KV, Nagar S, Baheti A. GC-MS profiling of Bauhinia variegata major phytoconstituents with computational identification of potential lead inhibitors of SARS-CoV-2 Mpro. Computers in Biology and Medicine 2022;147:105679. [DOI: 10.1016/j.compbiomed.2022.105679] [Reference Citation Analysis]
13 Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022;148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Hashemzadeh H, Iranshahy M, Iranshahi M, Raissi H. In silico exploration of disulfide derivatives of Ferula foetida oleo-gum (Covexir®) as promising therapeutics against SARS-CoV-2. Computers in Biology and Medicine 2022;146:105566. [DOI: 10.1016/j.compbiomed.2022.105566] [Reference Citation Analysis]
15 Tahsin A, Ahmed R, Bhattacharjee P, Adiba M, Al Saba A, Yasmin T, Chakraborty S, Hasan AM, Nabi AN. Most frequently harboured missense variants of hACE2 across different populations exhibit varying patterns of binding interaction with spike glycoproteins of emerging SARS-CoV-2 of different lineages. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105903] [Reference Citation Analysis]
16 Li F, Yin J, Lu M, Yang Q, Zeng Z, Zhang B, Li Z, Qiu Y, Dai H, Chen Y, Zhu F. ConSIG: consistent discovery of molecular signature from OMIC data. Brief Bioinform 2022:bbac253. [PMID: 35758241 DOI: 10.1093/bib/bbac253] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
17 Sagulkoo P, Chuntakaruk H, Rungrotmongkol T, Suratanee A, Plaimas K. Multi-Level Biological Network Analysis and Drug Repurposing Based on Leukocyte Transcriptomics in Severe COVID-19: In Silico Systems Biology to Precision Medicine. JPM 2022;12:1030. [DOI: 10.3390/jpm12071030] [Reference Citation Analysis]
18 McCollum CR, Courtney CM, O'Connor NJ, Aunins TR, Ding Y, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater Sci Eng 2022. [PMID: 35729709 DOI: 10.1021/acsbiomaterials.2c00510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
19 Xu H, Hu X, Yan X, Zhong W, Yin D, Gai Y. Exploring noncoding RNAs in thyroid cancer using a graph convolutional network approach. Computers in Biology and Medicine 2022;145:105447. [DOI: 10.1016/j.compbiomed.2022.105447] [Reference Citation Analysis]
20 Zeng Q, Qi X, Ma J, Hu F, Wang X, Qin H, Li M, Huang S, Yang Y, Li Y, Bai H, Jiang M, Ren D, Kang Y, Zhao Y, Chen X, Ding X, Ye D, Wang Y, Jiang J, Li D, Chen X, Hu K, Zhang B, Shi B, Zhang C. Distinct miRNAs associated with various clinical presentations of SARS-CoV-2 infection. iScience 2022;25:104309. [PMID: 35502319 DOI: 10.1016/j.isci.2022.104309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Abolfazli P, Aghajanzadeh T, Ghaderinasrabad M, Apue Nchama CN, Mokhlesi A, Talkhabi M. Bioinformatics analysis reveals molecular connections between non-alcoholic fatty liver disease (NAFLD) and COVID-19. J Cell Commun Signal 2022. [PMID: 35525888 DOI: 10.1007/s12079-022-00678-y] [Reference Citation Analysis]
22 Zhang C, Mou M, Zhou Y, Zhang W, Lian X, Shi S, Lu M, Sun H, Li F, Wang Y, Zeng Z, Li Z, Zhang B, Qiu Y, Zhu F, Gao J. Biological activities of drug inactive ingredients. Brief Bioinform 2022:bbac160. [PMID: 35524477 DOI: 10.1093/bib/bbac160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Khanal P, Patil VS, Bhandare VV, Dwivedi PS, Shastry C, Patil B, Gurav SS, Harish DR, Roy S. Computational investigation of benzalacetophenone derivatives against SARS-CoV-2 as potential multi-target bioactive compounds. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105668] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Yang X, Rutkovsky AC, Zhou J, Zhong Y, Reese J, Schnell T, Albrecht H, Owens WB, Nagarkatti PS, Nagarkatti M. Characterization of Altered Gene Expression and Histone Methylation in Peripheral Blood Mononuclear Cells Regulating Inflammation in COVID-19 Patients. J Immunol 2022;208:1968-77. [PMID: 35379747 DOI: 10.4049/jimmunol.2101099] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
25 Wang H. COVID-19, Anti-NMDA Receptor Encephalitis and MicroRNA. Front Immunol 2022;13:825103. [PMID: 35392089 DOI: 10.3389/fimmu.2022.825103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Zhou W, Xu C, Luo M, Wang P, Xu Z, Xue G, Jin X, Huang Y, Li Y, Nie H, Jiang Q, Anashkina AA. MutCov: A pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2. Comput Biol Med 2022;145:105509. [PMID: 35421792 DOI: 10.1016/j.compbiomed.2022.105509] [Reference Citation Analysis]
27 Elshemey WM, Elfiky AA, Ibrahim IM, Elgohary AM. Interference of Chaga mushroom terpenoids with the attachment of SARS-CoV-2; in silico perspective. Comput Biol Med 2022;145:105478. [PMID: 35421790 DOI: 10.1016/j.compbiomed.2022.105478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Lei Y, Meng Y, Guo X, Ning K, Bian Y, Li L, Hu Z, Anashkina AA, Jiang Q, Dong Y, Zhu X. Overview of structural variation calling: Simulation, identification, and visualization. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105534] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022;145:105465. [PMID: 35366467 DOI: 10.1016/j.compbiomed.2022.105465] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
30 Vogado L, Araújo F, Neto PS, Almeida J, Tavares JMRS, Veras R. A ensemble methodology for automatic classification of chest X-rays using deep learning. Comput Biol Med 2022;145:105442. [PMID: 35344867 DOI: 10.1016/j.compbiomed.2022.105442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Abusalah MAH, Khalifa M, Al-hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. JPM 2022;12:386. [DOI: 10.3390/jpm12030386] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Li F, Zhou Y, Zhang Y, Yin J, Qiu Y, Gao J, Zhu F. POSREG: proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability. Brief Bioinform 2022:bbac040. [PMID: 35183059 DOI: 10.1093/bib/bbac040] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 25.0] [Reference Citation Analysis]
33 Chen Y, Wang Y, Ding Y, Su X, Wang C. RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105322] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
34 Gangula A, Kim B, Casey B, Hamill A, Regunath H, Upendran A. Point-of-Care Testing of COVID-19: Current Status, Clinical Impact, and Future Therapeutic Perspectives. Point-of-Care Testing of COVID-19 2022. [DOI: 10.1007/978-981-19-4957-9_1] [Reference Citation Analysis]
35 Pepe G, Guarracino A, Ballesio F, Parca L, Ausiello G, Helmer-citterich M. Evaluation of potential sponge effects of SARS genomes in human. Non-coding RNA Research 2022. [DOI: 10.1016/j.ncrna.2022.01.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
36 Shen K, Shen B. Microbiota, Sports and Exercise Medicine. Translational Informatics 2022. [DOI: 10.1007/978-981-16-9162-1_4] [Reference Citation Analysis]
37 Bautista-Becerril B, Pérez-Dimas G, Sommerhalder-Nava PC, Hanono A, Martínez-Cisneros JA, Zarate-Maldonado B, Muñoz-Soria E, Aquino-Gálvez A, Castillejos-López M, Juárez-Cisneros A, Lopez-Gonzalez JS, Camarena A. miRNAs, from Evolutionary Junk to Possible Prognostic Markers and Therapeutic Targets in COVID-19. Viruses 2021;14:41. [PMID: 35062245 DOI: 10.3390/v14010041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
38 Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021;9:1823. [PMID: 34944639 DOI: 10.3390/biomedicines9121823] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, Wang W, Li J, Ni J, Ruan Y, Li L, Chen Y, Xie Y, Zhu Z, Cai X, Chen X, Yao L, Chen Y, Luo Y, LuXu S, Luo M, Chiu CM, Ma K, Zhu L, Cheng GJ, Bai C, Chiang YC, Wang L, Wei F, Lee TY, Huang HD. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2021:gkab1079. [PMID: 34850920 DOI: 10.1093/nar/gkab1079] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 23.0] [Reference Citation Analysis]
40 Paul S, Bravo Vázquez LA, Reyes-Pérez PR, Estrada-Meza C, Aponte Alburquerque RA, Pathak S, Banerjee A, Bandyopadhyay A, Chakraborty S, Srivastava A. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res 2021;308:198631. [PMID: 34788642 DOI: 10.1016/j.virusres.2021.198631] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
41 Ari Yuka S, Yilmaz A. Effect of SARS-CoV-2 infection on host competing endogenous RNA and miRNA network. PeerJ 2021;9:e12370. [PMID: 34722003 DOI: 10.7717/peerj.12370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Arghiani N, Nissan T, Matin MM. Role of microRNAs in COVID-19 with implications for therapeutics. Biomed Pharmacother 2021;144:112247. [PMID: 34601190 DOI: 10.1016/j.biopha.2021.112247] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
43 Zhang S, Amahong K, Zhang C, Li F, Gao J, Qiu Y, Zhu F. RNA-RNA interactions between SARS-CoV-2 and host benefit viral development and evolution during COVID-19 infection. Brief Bioinform 2021:bbab397. [PMID: 34585235 DOI: 10.1093/bib/bbab397] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
44 Duecker RP, Adam EH, Wirtz S, Gronau L, Khodamoradi Y, Eberhardt FJ, Donath H, Gutmann D, Vehreschild MJGT, Zacharowski K, Kreyenberg H, Chiocchetti AG, Zielen S, Schubert R. The MiR-320 Family Is Strongly Downregulated in Patients with COVID-19 Induced Severe Respiratory Failure. Int J Mol Sci 2021;22:10351. [PMID: 34638691 DOI: 10.3390/ijms221910351] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
45 Parray A, Mir FA, Doudin A, Iskandarani A, Danjuma MM, Kuni RAT, Abdelmajid A, Abdelhafez I, Arif R, Mulhim M, Abukhattab M, Dar SR, Moustafa AA, Elkord E, Al Khal AL, Elzouki AN, Cyprian F. SnoRNAs and miRNAs Networks Underlying COVID-19 Disease Severity. Vaccines (Basel) 2021;9:1056. [PMID: 34696164 DOI: 10.3390/vaccines9101056] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
46 Dash S, Dash C, Pandhare J. Therapeutic Significance of microRNA-Mediated Regulation of PARP-1 in SARS-CoV-2 Infection. Noncoding RNA 2021;7:60. [PMID: 34698261 DOI: 10.3390/ncrna7040060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
47 B HDM, Guru A, Sudhakaran G, Murugan R, Arshad A, Arockiaraj J. Double‐edged sword role of shrimp miRNA explains an evolutionary language between shrimp‐pathogen interactions that unties the knot of shrimp infection. Rev Aquacult. [DOI: 10.1111/raq.12613] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
48 Wang H, Zhang J, Lu Z, Dai W, Ma C, Xiang Y, Zhang Y. Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Brief Bioinform 2021:bbab373. [PMID: 34505138 DOI: 10.1093/bib/bbab373] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Dehipawala S, Cheung E, Tremberger G, Cheung T. Entropy and Fractal Dimension Study of the TDP-43 Protein Low Complexity Domain Sequence in ALS Disease Severity and SARS-CoV-2 Gene Sequences in Virulence Variability. Entropy (Basel) 2021;23:1038. [PMID: 34441178 DOI: 10.3390/e23081038] [Reference Citation Analysis]
50 Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021;22:8663. [PMID: 34445368 DOI: 10.3390/ijms22168663] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
51 Keikha R, Hashemi-Shahri SM, Jebali A. The relative expression of miR-31, miR-29, miR-126, and miR-17 and their mRNA targets in the serum of COVID-19 patients with different grades during hospitalization. Eur J Med Res 2021;26:75. [PMID: 34256840 DOI: 10.1186/s40001-021-00544-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
52 Meng F, Siu GK, Mok BW, Sun J, Fung KSC, Lam JY, Wong NK, Gedefaw L, Luo S, Lee TMH, Yip SP, Huang CL. Viral MicroRNAs Encoded by Nucleocapsid Gene of SARS-CoV-2 Are Detected during Infection, and Targeting Metabolic Pathways in Host Cells. Cells 2021;10:1762. [PMID: 34359932 DOI: 10.3390/cells10071762] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
53 Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Barazesh A, Karimazar M, Nguewa P, Carrera Silva EA. Highlighting the interplay of microRNAs from Leishmania parasites and infected-host cells. Parasitology 2021;:1-13. [PMID: 34218829 DOI: 10.1017/S0031182021001177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
54 Banaganapalli B, Al-Rayes N, Awan ZA, Alsulaimany FA, Alamri AS, Elango R, Malik MZ, Shaik NA. Multilevel systems biology analysis of lung transcriptomics data identifies key miRNAs and potential miRNA target genes for SARS-CoV-2 infection. Comput Biol Med 2021;135:104570. [PMID: 34157472 DOI: 10.1016/j.compbiomed.2021.104570] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]