BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Willie JT, Lim MM, Bennett RE, Azarion AA, Schwetye KE, Brody DL. Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma 2012;29:1908-21. [PMID: 22607167 DOI: 10.1089/neu.2012.2404] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Elliott JE, Opel RA, Weymann KB, Chau AQ, Papesh MA, Callahan ML, Storzbach D, Lim MM. Sleep Disturbances in Traumatic Brain Injury: Associations With Sensory Sensitivity. J Clin Sleep Med 2018;14:1177-86. [PMID: 29991430 DOI: 10.5664/jcsm.7220] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
2 Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2017;2:71-84. [PMID: 31236496 DOI: 10.1016/j.nbscr.2016.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
3 Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, Prager EM, Ahlers ST, Crawford F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J Neurotrauma 2021. [PMID: 34210174 DOI: 10.1089/neu.2021.0094] [Reference Citation Analysis]
4 Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. Mass Spectrom Rev 2021;:e21734. [PMID: 34558119 DOI: 10.1002/mas.21734] [Reference Citation Analysis]
5 Konduru SS, Wallace EP, Pfammatter JA, Rodrigues PV, Jones MV, Maganti RK. Sleep-wake characteristics in a mouse model of severe traumatic brain injury: Relation to posttraumatic epilepsy. Epilepsia Open 2021;6:181-94. [PMID: 33681661 DOI: 10.1002/epi4.12462] [Reference Citation Analysis]
6 Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Diffuse brain injury does not affect chronic sleep patterns in the mouse. Brain Inj 2014;28:504-10. [PMID: 24702469 DOI: 10.3109/02699052.2014.888768] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
7 Rowe RK, Griesbach GS. Immune-endocrine interactions in the pathophysiology of sleep-wake disturbances following traumatic brain injury: A narrative review. Brain Research Bulletin 2022. [DOI: 10.1016/j.brainresbull.2022.04.017] [Reference Citation Analysis]
8 Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017;40. [PMID: 28329120 DOI: 10.1093/sleep/zsx044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
9 Noain D, Büchele F, Schreglmann SR, Valko PO, Gavrilov YV, Morawska MM, Imbach LL, Baumann CR. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury. Journal of Neurotrauma 2018;35:85-93. [DOI: 10.1089/neu.2017.5067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Clark IA, Vissel B. Inflammation-sleep interface in brain disease: TNF, insulin, orexin. J Neuroinflammation. 2014;11:51. [PMID: 24655719 DOI: 10.1186/1742-2094-11-51] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
11 Sabir M, Gaudreault P, Freyburger M, Massart R, Blanchet-cohen A, Jaber M, Gosselin N, Mongrain V. Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice. Brain, Behavior, and Immunity 2015;47:118-30. [DOI: 10.1016/j.bbi.2014.12.023] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
12 Hetzer SM, Guilhaume-Correa F, Day D, Bedolla A, Evanson NK. Traumatic Optic Neuropathy Is Associated with Visual Impairment, Neurodegeneration, and Endoplasmic Reticulum Stress in Adolescent Mice. Cells 2021;10:996. [PMID: 33922788 DOI: 10.3390/cells10050996] [Reference Citation Analysis]
13 Elliott JE, Keil AT, Mithani S, Gill JM, O’neil ME, Cohen AS, Lim MM. Dietary Supplementation With Branched Chain Amino Acids to Improve Sleep in Veterans With Traumatic Brain Injury: A Randomized Double-Blind Placebo-Controlled Pilot and Feasibility Trial. Front Syst Neurosci 2022;16:854874. [DOI: 10.3389/fnsys.2022.854874] [Reference Citation Analysis]
14 Gosselin N, Baumann CR. Pathophysiology of Sleep-Wake Disturbances After Traumatic Brain Injury. Principles and Practice of Sleep Medicine. Elsevier; 2017. pp. 260-269.e4. [DOI: 10.1016/b978-0-323-24288-2.00025-8] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Thomasy HE, Opp MR. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019;36:802-14. [PMID: 30136622 DOI: 10.1089/neu.2018.5810] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
16 Niesman PJ, Wei J, LaPorte MJ, Carlson LJ, Nassau KL, Bao GC, Cheng JP, de la Tremblaye P, Lajud N, Bondi CO, Kline AE. Albeit nocturnal, rats subjected to traumatic brain injury do not differ in neurobehavioral performance whether tested during the day or night. Neurosci Lett 2018;665:212-6. [PMID: 29229396 DOI: 10.1016/j.neulet.2017.12.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
17 Giordano KR, Denman CR, Dollish HK, Fernandez F, Lifshitz J, Akhter M, Rowe RK. Intracerebral hemorrhage in the mouse altered sleep-wake patterns and activated microglia. Experimental Neurology 2020;327:113242. [DOI: 10.1016/j.expneurol.2020.113242] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 McGee J, Alekseeva N, Chernyshev O, Minagar A. Traumatic Brain Injury and Behavior: A Practical Approach. Neurol Clin 2016;34:55-68. [PMID: 26613995 DOI: 10.1016/j.ncl.2015.08.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
19 Modarres MH, Kuzma NN, Kretzmer T, Pack AI, Lim MM. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man. Neurobiol Sleep Circadian Rhythms 2017;2:59-70. [PMID: 31236495 DOI: 10.1016/j.nbscr.2016.06.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
20 Wiseman-hakes C, Duclos C, Blais H, Dumont M, Bernard F, Desautels A, Menon DK, Gilbert D, Carrier J, Gosselin N. Sleep in the Acute Phase of Severe Traumatic Brain Injury: A Snapshot of Polysomnography. Neurorehabil Neural Repair 2016;30:713-21. [DOI: 10.1177/1545968315619697] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
21 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
22 Leng Y, Byers AL, Barnes DE, Peltz CB, Li Y, Yaffe K. Traumatic Brain Injury and Incidence Risk of Sleep Disorders in Nearly 200,000 US Veterans. Neurology 2021;96:e1792-9. [PMID: 33658328 DOI: 10.1212/WNL.0000000000011656] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Rowe RK, Harrison JL, Morrison HW, Subbian V, Murphy SM, Lifshitz J. Acute Post-Traumatic Sleep May Define Vulnerability to a Second Traumatic Brain Injury in Mice. J Neurotrauma 2019;36:1318-34. [PMID: 30398389 DOI: 10.1089/neu.2018.5980] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
24 Komol’tsev IG, Levshina IP, Novikova MR, Tishkina AO, Stepanichev MY, Gulyaeva NV. The Acute Post-Traumatic Period in Rats Is Accompanied by an Anxiety State and a Decrease in the Proportion of REM Sleep. Neurosci Behav Physi 2018;48:785-95. [DOI: 10.1007/s11055-018-0631-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Elliott JE, De Luche SE, Churchill MJ, Moore C, Cohen AS, Meshul CK, Lim MM. Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice. Sleep 2018;41. [PMID: 29315422 DOI: 10.1093/sleep/zsx212] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
26 Vu PA, Tucker LB, Liu J, Mcnamara EH, Tran T, Fu AH, Kim Y, Mccabe JT. Transient disruption of mouse home cage activities and assessment of orexin immunoreactivity following concussive- or blast-induced brain injury. Brain Research 2018;1700:138-51. [DOI: 10.1016/j.brainres.2018.08.034] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
27 Kho CM, Enche Ab Rahim SK, Ahmad ZA, Abdullah NS. A Review on Microdialysis Calibration Methods: the Theory and Current Related Efforts. Mol Neurobiol. 2017;54:3506-3527. [PMID: 27189617 DOI: 10.1007/s12035-016-9929-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
28 Lim MM, Szymusiak R. Neurobiology of Arousal and Sleep: Updates and Insights Into Neurological Disorders. Curr Sleep Medicine Rep 2015;1:91-100. [DOI: 10.1007/s40675-015-0013-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
29 Skopin MD, Kabadi SV, Viechweg SS, Mong JA, Faden AI. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury. J Neurotrauma 2015;32:289-96. [PMID: 25242371 DOI: 10.1089/neu.2014.3664] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
30 Borniger JC, Ungerleider K, Zhang N, Karelina K, Magalang UJ, Weil ZM. Repetitive Brain Injury of Juvenile Mice Impairs Environmental Enrichment-Induced Modulation of REM Sleep in Adulthood. Neuroscience 2018;375:74-83. [PMID: 29432885 DOI: 10.1016/j.neuroscience.2018.01.064] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
31 Ouellet MC, Beaulieu-Bonneau S, Morin CM. Sleep-wake disturbances after traumatic brain injury. Lancet Neurol 2015;14:746-57. [PMID: 26067127 DOI: 10.1016/S1474-4422(15)00068-X] [Cited by in Crossref: 121] [Cited by in F6Publishing: 32] [Article Influence: 17.3] [Reference Citation Analysis]
32 Harrison JL, Rowe RK, Ellis TW, Yee NS, O'Hara BF, Adelson PD, Lifshitz J. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Brain Behav Immun 2015;47:131-40. [PMID: 25585137 DOI: 10.1016/j.bbi.2015.01.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 10.6] [Reference Citation Analysis]
33 Saber M, Giordano KR, Hur Y, Ortiz JB, Morrison H, Godbout JP, Murphy SM, Lifshitz J, Rowe RK. Acute peripheral inflammation and post-traumatic sleep differ between sexes after experimental diffuse brain injury. Eur J Neurosci 2020;52:2791-814. [PMID: 31677290 DOI: 10.1111/ejn.14611] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
34 Lim MM, Elkind J, Xiong G, Galante R, Zhu J, Zhang L, Lian J, Rodin J, Kuzma NN, Pack AI, Cohen AS. Dietary therapy mitigates persistent wake deficits caused by mild traumatic brain injury. Sci Transl Med 2013;5:215ra173. [PMID: 24337480 DOI: 10.1126/scitranslmed.3007092] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 7.5] [Reference Citation Analysis]
35 Weymann KB, Wood LJ, Zhu X, Marks DL. A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav Immun 2014;37:84-94. [PMID: 24216337 DOI: 10.1016/j.bbi.2013.11.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
36 Büchele F, Morawska MM, Schreglmann SR, Penner M, Muser M, Baumann CR, Noain D. Novel Rat Model of Weight Drop-Induced Closed Diffuse Traumatic Brain Injury Compatible with Electrophysiological Recordings of Vigilance States. Journal of Neurotrauma 2016;33:1171-80. [DOI: 10.1089/neu.2015.4001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
37 Saber M, Murphy SM, Cho Y, Lifshitz J, Rowe RK. Experimental diffuse brain injury and a model of Alzheimer's disease exhibit disease-specific changes in sleep and incongruous peripheral inflammation. J Neurosci Res 2021;99:1136-60. [PMID: 33319441 DOI: 10.1002/jnr.24771] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Feng Z, Zhong YJ, Wang L, Wei TQ. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation. Neural Regen Res 2015;10:594-8. [PMID: 26170820 DOI: 10.4103/1673-5374.155433] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
39 Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2015;49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
40 Guldenmund P, Soddu A, Baquero K, Vanhaudenhuyse A, Bruno M, Gosseries O, Laureys S, Gómez F. Structural brain injury in patients with disorders of consciousness: A voxel-based morphometry study. Brain Injury 2016;30:343-52. [DOI: 10.3109/02699052.2015.1118765] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
41 Dong XY, Feng Z. Wake-promoting effects of vagus nerve stimulation after traumatic brain injury: upregulation of orexin-A and orexin receptor type 1 expression in the prefrontal cortex. Neural Regen Res 2018;13:244-51. [PMID: 29557373 DOI: 10.4103/1673-5374.226395] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]