BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stevenson MD, Canugovi C, Vendrov AE, Hayami T, Bowles DE, Krause KH, Madamanchi NR, Runge MS. NADPH Oxidase 4 Regulates Inflammation in Ischemic Heart Failure: Role of Soluble Epoxide Hydrolase. Antioxid Redox Signal 2019;31:39-58. [PMID: 30450923 DOI: 10.1089/ars.2018.7548] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Jha JC, Bose M, Jandeleit-dahm K. Modulation of Oxidative Stress in Cardiovascular Diseases. In: Chakraborti S, Dhalla NS, Dikshit M, Ganguly NK, editors. Modulation of Oxidative Stress in Heart Disease. Singapore: Springer; 2019. pp. 237-53. [DOI: 10.1007/978-981-13-8946-7_10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
2 Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 2021;164:44-57. [PMID: 33418110 DOI: 10.1016/j.freeradbiomed.2020.12.450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021;12:642470. [PMID: 33716791 DOI: 10.3389/fphys.2021.642470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Wang Z, Zhang M, Xu Y, Gu Y, Song Y, Jiang T. Identification of Independent and Communal Differentially Expressed Genes as Well as Potential Therapeutic Targets in Ischemic Heart Failure and Non-Ischemic Heart Failure. Pharmgenomics Pers Med 2021;14:683-93. [PMID: 34163213 DOI: 10.2147/PGPM.S313621] [Reference Citation Analysis]
5 Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells 2020;9:E1565. [PMID: 32604981 DOI: 10.3390/cells9071565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Li R, Frangogiannis NG. Chemokines in cardiac fibrosis. Curr Opin Physiol 2021;19:80-91. [PMID: 33195890 DOI: 10.1016/j.cophys.2020.10.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
7 Dhalla NS, Elimban V, Bartekova M, Adameova A. Involvement of Oxidative Stress in the Development of Subcellular Defects and Heart Disease. Biomedicines 2022;10:393. [DOI: 10.3390/biomedicines10020393] [Reference Citation Analysis]
8 Leng Y, Luo X, Yu J, Jia H, Yu B. Ferroptosis: A Potential Target in Cardiovascular Disease. Front Cell Dev Biol 2022;9:813668. [DOI: 10.3389/fcell.2021.813668] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 2021;179:133-43. [PMID: 34921930 DOI: 10.1016/j.freeradbiomed.2021.12.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
10 Hsu WT, Tseng YH, Jui HY, Kuo CC, Wu KK, Lee CM. 5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation. J Mol Cell Cardiol 2021;158:101-14. [PMID: 34087195 DOI: 10.1016/j.yjmcc.2021.05.014] [Reference Citation Analysis]