BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. Nanotechnology 2016;27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Dube T, Panda JJ. Anti-Glioma Activity Achieved by Dual Blood-Brain Barrier/Glioma Targeting Naive Chimeric Peptides-Based Co-Assembled Nanophototheranostics. Pharmaceutics 2023;15. [PMID: 36678895 DOI: 10.3390/pharmaceutics15010265] [Reference Citation Analysis]
2 Wang Y, Min J, Wei H, Liu J, Liang Y, Su R, Zhang G, Zhang W, Wang Y, Qi W. Peptide-based porous materials and their applications. Sci China Mater 2022. [DOI: 10.1007/s40843-022-2285-5] [Reference Citation Analysis]
3 Zhu M, Chen J, Lin Y. Exploring chemical space and structural diversity of supramolecular peptide materials. Supramolecular Materials 2022. [DOI: 10.1016/j.supmat.2022.100030] [Reference Citation Analysis]
4 Poirier A, Le Griel P, Zinn T, Pernot P, Roelants SLKW, Soetaert W, Baccile N. Energy Landscape of the Sugar Conformation Controls the Sol-to-Gel Transition in Self-Assembled Bola Glycolipid Hydrogels. Chem Mater 2022;34:5546-57. [DOI: 10.1021/acs.chemmater.2c00580] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Abbas M, Ovais M, Atiq A, Ansari TM, Xing R, Spruijt E, Yan X. Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coordination Chemistry Reviews 2022;460:214481. [DOI: 10.1016/j.ccr.2022.214481] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
6 Zhou Y, Ke P, Bao X, Wu H, Xia Y, Zhang Z, Zhong H, Dai Q, Wu L, Wang T, Lin M, Li Y, Jiang X, Yang Q, Lu Y, Zhong X, Han M, Gao J. Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche. Nat Commun 2022;13:2906. [PMID: 35614076 DOI: 10.1038/s41467-022-30634-8] [Reference Citation Analysis]
7 Yosefi G, Bitton R. Hierarchical Membranes Self‐Assembled at the Interface between Peptides and Polymer Aqueous Solutions. Israel Journal of Chemistry. [DOI: 10.1002/ijch.202200008] [Reference Citation Analysis]
8 Kihal N, Nazemi A, Bourgault S. Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. Nanomaterials (Basel) 2022;12:1223. [PMID: 35407341 DOI: 10.3390/nano12071223] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Wang S, Li M. Research on the Electronic Properties of Tyrosine Dipeptide Molecule: Evaluation of the First-principles Theory. Russ J Phys Chem B 2021;15:S181-8. [DOI: 10.1134/s1990793121100079] [Reference Citation Analysis]
10 Sun T, Feng Y, Peng J, Hao Y, Zhang L, Liu L. Cofactors-like peptide self-assembly exhibiting the enhanced catalytic activity in the peptide-metal nanocatalysts. J Colloid Interface Sci 2022;617:511-24. [PMID: 35299125 DOI: 10.1016/j.jcis.2022.02.131] [Reference Citation Analysis]
11 Mohanta GC, Pandey SK. An Overview of Biomolecules Used in the Development of Point-of-Care Sensor. Nanobiosensors for point-of-care medical diagnostics 2022. [DOI: 10.1007/978-981-19-5141-1_2] [Reference Citation Analysis]
12 Yue C, Ding C, Cheng B, Du X, Su J. Preparation of Collagen/Aspartic Acid Nanocomposite Fibers and Their Self-Assembly Behaviors. Journal of Natural Fibers. [DOI: 10.1080/15440478.2021.1973938] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 d'Orlyé F, Trapiella-Alfonso L, Lescot C, Pinvidic M, Doan BT, Varenne A. Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications. Molecules 2021;26:4587. [PMID: 34361740 DOI: 10.3390/molecules26154587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Baruch-leshem A, Chevallard C, Gobeaux F, Guenoun P, Daillant J, Fontaine P, Goldmann M, Kushmaro A, Rapaport H. Catalytically active peptides affected by self-assembly and residues order. Colloids and Surfaces B: Biointerfaces 2021;203:111751. [DOI: 10.1016/j.colsurfb.2021.111751] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Dutta A, Das S, Das P, Maity S, Ghosh P. Solid state self-assembly and morphology of a rigid non-coded γ-amino acid inserted tripeptide. Zeitschrift für Kristallographie - Crystalline Materials 2021;236:123-7. [DOI: 10.1515/zkri-2021-2006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021;7:4136-63. [PMID: 33780230 DOI: 10.1021/acsbiomaterials.1c00030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
17 Li L, Zhang J, Liu M, Shi X, Zhang W, Li Y, Zhou N, Zhang Z, Zhu X. Smart supramolecular nanofibers and nanoribbons from uniform amphiphilic azobenzene oligomers. Chem Commun (Camb) 2021;57:2192-5. [PMID: 33527917 DOI: 10.1039/d0cc06994a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Saadi S, Ghazali HM, Saari N, Abdulkarim SM. The structural reconformation of peptides in enhancing functional and therapeutic properties: Insights into their solid state crystallizations. Biophys Chem 2021;273:106565. [PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Li X, Li J, Hao S, Han A, Yang Y, Fang G, Liu J, Wang S. Enzyme mimics based membrane reactor for di(2-ethylhexyl) phthalate degradation. J Hazard Mater 2021;403:123873. [PMID: 33264945 DOI: 10.1016/j.jhazmat.2020.123873] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
20 Wang F, Gnewou O, Modlin C, Beltran LC, Xu C, Su Z, Juneja P, Grigoryan G, Egelman EH, Conticello VP. Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nat Commun 2021;12:407. [PMID: 33462223 DOI: 10.1038/s41467-020-20689-w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
21 Pérez-pedroza R, Ávila-ramírez A, Khan Z, Moretti M, Hauser CAE, De Santiago GT. Supramolecular Biopolymers for Tissue Engineering. Advances in Polymer Technology 2021;2021:1-23. [DOI: 10.1155/2021/8815006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
22 Dao TPT, Vezenkov L, Subra G, Ladmiral V, Semsarilar M. Nano-assemblies with core-forming hydrophobic polypeptide via polymerization-induced self-assembly (PISA). Polym Chem 2021;12:113-21. [DOI: 10.1039/d0py00793e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
23 Fortunato A, Sanzone A, Mattiello S, Beverina L, Mba M. The pH- and salt-controlled self-assembly of [1]benzothieno[3,2-b][1]-benzothiophene–peptide conjugates in supramolecular hydrogels. New J Chem 2021;45:13389-13398. [DOI: 10.1039/d1nj02294f] [Reference Citation Analysis]
24 Muthusivarajan R, Allen WJ, Pehere AD, Sokolov KV, Fuentes D. Role of alkylated residues in the tetrapeptide self-assembly-A molecular dynamics study. J Comput Chem 2020;41:2634-40. [PMID: 32930440 DOI: 10.1002/jcc.26419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, Shukla R. Recent Advances in Self-Assembled Nanoparticles for Drug Delivery. CDD 2020;17:279-91. [DOI: 10.2174/1567201817666200210122340] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
26 Daso RE, Osborn LJ, Thomas MF, Banerjee IA. Development of Nanoscale Hybrids from Ionic Liquid-Peptide Amphiphile Assemblies as New Functional Materials. ACS Omega 2020;5:14543-54. [PMID: 32596592 DOI: 10.1021/acsomega.0c01254] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
27 Sahibbeyli V, Yildiz DB, Papir G, Dede Y, Demirel G. The Role of Molecular Structure of Phenylalanine Peptides on the Formation of Vertically Aligned Ordered Bionanostructures: Implications for Sensing Application. ACS Appl Nano Mater 2020;3:4305-13. [DOI: 10.1021/acsanm.0c00456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
28 Novelli F, Strofaldi A, De Santis S, Del Giudice A, Casciardi S, Galantini L, Morosetti S, Pavel NV, Masci G, Scipioni A. Polymorphic Self-Organization of Lauroyl Peptide in Response to pH and Concentration. Langmuir 2020;36:3941-51. [DOI: 10.1021/acs.langmuir.9b02924] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Castillo-vallés M, Cano M, Bermejo-sanz A, Gimeno N, Ros MB. Towards supramolecular nanostructured materials: control of the self-assembly of ionic bent-core amphiphiles. J Mater Chem C 2020;8:1998-2007. [DOI: 10.1039/c9tc06002b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
30 Li X, Li J, Hao S, Han A, Yang Y, Luo X, Fang G, Liu J, Wang S. Enzyme mimics based on self-assembled peptides for di(2-ethylhexyl)phthalate degradation. J Mater Chem B 2020;8:9601-9. [DOI: 10.1039/d0tb01931c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
31 Guler MO. Design of amphiphilic peptide nanofibers. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00008-5] [Reference Citation Analysis]
32 James EI, Jenkins LD, Murphy AR. Peptide‐Thiophene Hybrids as Self‐Assembling Conductive Hydrogels. Macromol Mater Eng 2019;304:1900285. [DOI: 10.1002/mame.201900285] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Li LL, Qiao ZY, Wang L, Wang H. Programmable Construction of Peptide-Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics. Adv Mater 2019;31:e1804971. [PMID: 30450607 DOI: 10.1002/adma.201804971] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 11.5] [Reference Citation Analysis]
34 Crowet JM, Sinnaeve D, Fehér K, Laurin Y, Deleu M, Martins JC, Lins L. Molecular Model for the Self-Assembly of the Cyclic Lipodepsipeptide Pseudodesmin A. J Phys Chem B 2019;123:8916-22. [PMID: 31558021 DOI: 10.1021/acs.jpcb.9b08035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Nambiar M, Nepal M, Chmielewski J. Self-Assembling Coiled-Coil Peptide Nanotubes with Biomolecular Cargo Encapsulation. ACS Biomater Sci Eng 2019;5:5082-7. [DOI: 10.1021/acsbiomaterials.9b01304] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
36 Gazit E. Reductionist Approach in Peptide-Based Nanotechnology. Annu Rev Biochem 2018;87:533-53. [PMID: 29925257 DOI: 10.1146/annurev-biochem-062917-012541] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
37 Emtiazi G, Zohrabi T, Habibi N, Razmjou A, Emami N. Vertical Alignment of Size-Controlled Self-Assembled Diphenylalanine Peptide Nanotubes Using Polyethersulfone Hollow Fiber Membranes On Silicon. Int J Pept Res Ther 2019;25:761-767. [DOI: 10.1007/s10989-018-9725-6] [Reference Citation Analysis]
38 Gerbelli BB, Vassiliades SV, Rojas JEU, Pelin JNBD, Mancini RSN, Pereira WSG, Aguilar AM, Venanzi M, Cavalieri F, Giuntini F, Alves WA. Hierarchical Self‐Assembly of Peptides and its Applications in Bionanotechnology. Macromol Chem Phys 2019;220:1900085. [DOI: 10.1002/macp.201900085] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
39 Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019;11:4147-82. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Cited by in Crossref: 85] [Cited by in F6Publishing: 89] [Article Influence: 21.3] [Reference Citation Analysis]
40 Kan A, Joshi NS. Towards the directed evolution of protein materials. MRS Commun 2019;9:441-55. [PMID: 31750012 DOI: 10.1557/mrc.2019.28] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
41 Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019;5:E14. [PMID: 30845674 DOI: 10.3390/gels5010014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
42 Lombardi L, Shi Y, Falanga A, Galdiero E, de Alteriis E, Franci G, Chourpa I, Azevedo HS, Galdiero S. Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly. Biomacromolecules 2019;20:1362-74. [PMID: 30735368 DOI: 10.1021/acs.biomac.8b01740] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 14.0] [Reference Citation Analysis]
43 Khalily MA, Usta H, Ozdemir M, Bakan G, Dikecoglu FB, Edwards-Gayle C, Hutchinson JA, Hamley IW, Dana A, Guler MO. The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides. Nanoscale 2018;10:9987-95. [PMID: 29774920 DOI: 10.1039/c8nr01604f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
44 Gorla L, Martí-centelles V, Altava B, Burguete MI, Luis SV. The role of the side chain in the conformational and self-assembly patterns of C2 -symmetric Val and Phe pseudopeptidic derivatives. CrystEngComm 2019;21:2398-408. [DOI: 10.1039/c8ce02088d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
45 Li X, Li J, Zhu J, Hao S, Fang G, Liu J, Wang S. Degradation of phthalic acid esters (PAEs) by an enzyme mimic and its application in the degradation of intracellular DEHP. Chem Commun 2019;55:13458-61. [DOI: 10.1039/c9cc06794a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
46 Chan KH, Lee WH, Ni M, Loo Y, Hauser CAE. C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs. Sci Rep 2018;8:17127. [PMID: 30459362 DOI: 10.1038/s41598-018-35431-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
47 Amit M, Yuran S, Gazit E, Reches M, Ashkenasy N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. Adv Mater 2018;30:e1707083. [PMID: 29989255 DOI: 10.1002/adma.201707083] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 15.0] [Reference Citation Analysis]
48 Richtar J, Heinrichova P, Apaydin DH, Schmiedova V, Yumusak C, Kovalenko A, Weiter M, Sariciftci NS, Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules 2018;23:E2271. [PMID: 30189689 DOI: 10.3390/molecules23092271] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
49 Lampel A, Ulijn RV, Tuttle T. Guiding principles for peptide nanotechnology through directed discovery. Chem Soc Rev 2018;47:3737-58. [PMID: 29748676 DOI: 10.1039/c8cs00177d] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 16.8] [Reference Citation Analysis]
50 Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018;47:3574-620. [PMID: 29479622 DOI: 10.1039/c7cs00877e] [Cited by in Crossref: 256] [Cited by in F6Publishing: 262] [Article Influence: 51.2] [Reference Citation Analysis]
51 Cinar G, Ozdemir A, Hamsici S, Gunay G, Dana A, Tekinay AB, Guler MO. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci 2016;5:67-76. [PMID: 27819087 DOI: 10.1039/c6bm00656f] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 7.8] [Reference Citation Analysis]
52 Creasey RCG, Mostert AB, Nguyen TAH, Virdis B, Freguia S, Laycock B. Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomater 2018;69:1-30. [PMID: 29357319 DOI: 10.1016/j.actbio.2018.01.007] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
53 Raghavan V, Polavarapu PL. Chiroptical Spectroscopic Studies on Soft Aggregates and Their Interactions. Chiral Analysis 2018. [DOI: 10.1016/b978-0-444-64027-7.00004-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
54 Solomon LA, Sykes ME, Wu YA, Schaller RD, Wiederrecht GP, Fry HC. Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies. ACS Nano 2017;11:9112-8. [PMID: 28817256 DOI: 10.1021/acsnano.7b03867] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
55 Gunay G, Sever M, Tekinay AB, Guler MO. Three-Dimensional Laminin Mimetic Peptide Nanofiber Gels for In Vitro Neural Differentiation. Biotechnol J 2017;12. [PMID: 28786563 DOI: 10.1002/biot.201700080] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
56 Hatip Koc M, Cinar Ciftci G, Baday S, Castelletto V, Hamley IW, Guler MO. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. Langmuir 2017;33:7947-56. [DOI: 10.1021/acs.langmuir.7b01266] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
57 Bella A, Ray S, Ryadnov MG. Linear and orthogonal peptide templating of silicified protein fibres. Org Biomol Chem 2017;15:5380-5. [PMID: 28620669 DOI: 10.1039/c7ob01134b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
58 He X, Zhang F, Zhang L, Zhang Q, Fang G, Liu J, Wang S, Zhang S. Probing the structure-activity relationship of a novel artificial cellobiose hydrolase. J Mater Chem B 2017;5:5225-33. [PMID: 32264107 DOI: 10.1039/c7tb01426k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
59 Shi Y, Hu Y, Ochbaum G, Lin R, Bitton R, Cui H, Azevedo HS. Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition. Chem Commun (Camb) 2017;53:7037-40. [PMID: 28613294 DOI: 10.1039/c7cc03512h] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
60 Mamone M, Gonçalves RSB, Blanchard F, Bernadat G, Ongeri S, Milcent T, Crousse B. N-Difluoromethyl-triazole as a constrained scaffold in peptidomimetics. Chem Commun 2017;53:5024-7. [DOI: 10.1039/c7cc01298e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
61 Fan T, Yu X, Shen B, Sun L. Peptide Self-Assembled Nanostructures for Drug Delivery Applications. Journal of Nanomaterials 2017;2017:1-16. [DOI: 10.1155/2017/4562474] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
62 He X, Zhang F, Liu J, Fang G, Wang S. Homogenous graphene oxide-peptide nanofiber hybrid hydrogel as biomimetic polysaccharide hydrolase. Nanoscale 2017;9:18066-74. [DOI: 10.1039/c7nr06525f] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
63 Banerji B, Chatterjee M, Prodhan C, Chaudhuri K. Tripeptide consisting of benzyl protected di-cysteine and phenylalanine forms spherical assembly and induces cytotoxicity in cancer cells via apoptosis. RSC Adv 2016;6:112667-76. [DOI: 10.1039/c6ra23911k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]